首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Rationale

The demographics of patients with idiopathic pulmonary arterial hypertension (IPAH) are changing and this diagnosis is increasingly being made in older patients. However, diagnostic misclassifications are common as it may be difficult to differentiate between IPAH and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF). We investigated the hypothesis that the capillary pCO2 (pcCO2) may help distinguishing between idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF).

Methods

In a cross-sectional study, we retrospectively assessed pcCO2 levels (obtained from arterialized capillary blood at the time of diagnosis) from patients with IPAH or PH-HFpEF, respectively. Receiver operated characteristics (ROC) were used to determine the pcCO2 level providing the best discrimination between these two conditions. PcCO2 values were considered helpful if they were associated with a negative predictive value >0.9 to excluded either IPAH or PH-HFpEF.

Results

The study enrolled 185 patients, 99 with IPAH (74% female; age 47 ± 17 years; body mass index 26 ± 5 kg/m2, PAPm 53 ± 12 mmHg, PAWP 8 ± 3 mmHg), and 86 with PH-HFpEF (64% female; age 69 ± 10 years; body mass index 30 ± 6 kg/m2, PAPm 47 ± 10 mmHg, PAWP 21 ± 5 mmHg). PcCO2 at time of diagnosis was 33 ± 4 mmHg in the IPAH group and 40 ± 5 mmHg in the PH-HFpEF group (p < 0.001), respectively. According to ROC analysis, a pcCO2 of 36 mmHg was the best discriminator between both entities with an area under curve of 0.87 (p < 0.001). The likelihood of PH-HFpEF was <10% in patients with a PcCO2 < 34 mmHg, whereas the likelihood of IPAH was <10% in patients with a PcCO2 > 41 mmHg.

Conclusions

PcCO2 levels were significantly lower in IPAH compared to PH-HFpEF and may provide useful information in differentiating between both conditions.  相似文献   

2.

Background

Acute exercise in the heat has been shown to reduce appetite. However, the influence of exercise in the cold on appetite regulation remains unclear. The aim of this study was to compare exercise-induced appetite regulation under three different environmental temperatures.

Methods

Eleven male participants completed three experimental trials on the following separate days: exercise in the heat (36°C), exercise at neutral temperature (24°C), and exercise in the cold (12°C). The exercise trials consisted of pedaling exercises for 30 min at 65% of maximal oxygen uptake (VO2max). Blood samples were collected repeatedly to determine plasma ghrelin, peptide YY (PYY) and other hormonal concentrations. Subjective feelings of hunger and tympanic temperature were also monitored.

Results

Tympanic temperature was significantly higher in the 36°C trial than that of the other two trials (P < 0.05). The subjective feelings of hunger in the 36°C and 24°C trials were significantly lower than those in the 12°C trial (P < 0.05). Plasma ghrelin concentration decreased significantly with exercise in all conditions (P < 0.05), and the responses were not significantly different among the three conditions. Plasma PYY concentration increased significantly after the exercise in the 24°C trial only (P < 0.05), with no significant difference among the three trials.

Conclusions

These results suggest that exposure to hot or cold temperatures during exercise did not affect exercise-induced plasma ghrelin and PYY responses. However, the exercise-induced reduction of subjective hunger was significantly attenuated in a cold environment.  相似文献   

3.

Background

The aim of this study was to develop the near infrared fluorescence (NIRF)-based imaging agent for the visualization of vascular endothelial growth factor (VEGF) in colon cancer. AlexaFluor 750 conjugating with bevacizumab, and injected intravenously into nude mice bearing VEGF over-expressing HT29 human colorectal cancer. Optical imaging was performed at 15 min, 24 h and 48 h post injection. Immunofluorescences staining of the tumor sections were performed. HT29 colorectal cancer xenografts were clearly visualized with bevacizumab-AlexaFluor 750.

Results

Ex vivo analysis showed 2.1 ± 0.4%, 37.6 ± 6.3% and 38.5 ± 6.2% injected dose/g accumulated in the tumors at 15 min, 24 h and 48 h respectively. Tumor uptake was significantly decreased in pretreated with excess of bevacizumab (p = 0.002). Immunofluorescence analysis showed strong staining of anti-CD 31 antibody around the blood vessels. Anti-VEGF-A and bevacizumab showed heterogeneous expression throughout the tumor.

Conclusions

Current study successfully detected the VEGF expression in HT29 colorectal cancer xenografts, signifying as a potential agent for non-invasive imaging of VEGF expression, which may be applied in clinical practice.  相似文献   

4.

Background

Even extremely high-doses of the potent opioid, sufentanil, cannot reliably suppress stress responses to intense surgical stimuli such as sternotomy. The chemically related opioid remifentanil with its different pharmacokinetics and binding affinities for delta- and kappa-opioid receptors might be more effective in attenuating these responses.

Methods

ASA I-III patients scheduled for a surgical procedure with sternotomy under balanced anesthesia (sevoflurane and sufentanil 3 μg.kg-1 bolus, 0.017 μg.kg-1.min-1 infusion) were randomized into two groups. Patients in the study group were supplemented with remifentanil (2 μg.kg-1 bolus, 2–7 μg.kg-1.min-1 infusion) starting ten minutes before sternotomy. Heart rate, arterial blood pressures, cardiac index, ejection fraction, systemic vascular resistance index (SVRI), total body oxygen uptake (VO2) and electric dermal response were measured and compared between the groups.

Results

62 patients were studied (study group 32, control group 30). Systolic and mean arterial blood pressures, SVRI, VO2 and skin conductance increased during sternotomy and sternal spread in the control group but not in the study group. Systolic blood pressure increase: 7.5 ± 19 mmHg vs. -3.4 ± 8.9 (p = 0.005); VO2 increase: 31 ± 46% vs. -0.4 ± 32%; incidence of systolic blood pressure increase greater than 15 percent: 20% vs. 3% (p = 0.035) (control vs. study group).

Conclusion

High-dose remifentanil added to sevoflurane-sufentanil anesthesia suppresses the sympathoadrenergic response to sternotomy and sternal spread better than high-dose sufentanil alone.

Trial registration

Clinical Trial number: DRKS00004327, August 31, 2012

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2253-15-3) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

The present study addressed how 92% oxygen administration affects cognitive performance, blood oxygen saturation (SpO2), and heart rate (HR) of intellectually and developmentally disabled people.

Methods

Seven males (28.9 ± 1.8 years) and seven females (34.4 ± 8.3 years) with intellectual and developmental disabilities (disabled level 2.1 ± 0.5) completed an experiment consisting a 0-back task with normal air (21% oxygen) administered in one run and hyperoxic air (92% oxygen) administered in the other run. The experimental sequence in each run consisted of a 1-min adaptation phase, 2-min control phase, and 2-min 0-back task phase, where SpO2 and HR were gauged for each phase.

Results

The administration of 92% oxygen increased 0-back task performance of intellectually and developmentally disabled people, in association with increased SpO2 and decreased HR. Our results demonstrate that sufficient oxygen supply subserving cognitive functions, even as a short-term effect, could increase cognitive ability for the intellectually and developmentally disabled people.

Conclusions

It is concluded that enriched oxygen can positively affect, at least in the short-term, the working memory of those with intellectual and developmental disability.  相似文献   

6.

Background

The aim of the present study was to evaluate the in vitro antioxidant and free radical scavenging capacity of bioactive metabolites present in Newbouldia laevis leaf extract.

Results

Chromatographic and spectrophotometric methods were used in the study and modified where necessary in the study. Bioactivity of the extract was determined at 10 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml and 400 μg/ml concentrations expressed in % inhibition. The yield of the ethanolic leaf extract of N.laevis was 30.3 g (9.93%). Evaluation of bioactive metabolic constituents gave high levels of ascorbic acid (515.53 ± 12 IU/100 g [25.7 mg/100 g]), vitamin E (26.46 ± 1.08 IU/100 g), saponins (6.2 ± 0.10), alkaloids (2.20 ± 0.03), cardiac glycosides(1.48 ± 0.22), amino acids and steroids (8.01 ± 0.04) measured in mg/100 g dry weight; moderate levels of vitamin A (188.28 ± 6.19 IU/100 g), tannins (0.09 ± 0.30), terpenoids (3.42 ± 0.67); low level of flavonoids (1.01 ± 0.34 mg/100 g) and absence of cyanogenic glycosides, carboxylic acids and aldehydes/ketones. The extracts percentage inhibition of DPPH, hydroxyl radical (OH.), superoxide anion (O2.-), iron chelating, nitric oxide radical (NO), peroxynitrite (ONOO), singlet oxygen (1O2), hypochlorous acid (HOCl), lipid peroxidation (LPO) and FRAP showed a concentration-dependent antioxidant activity with no significant difference with the controls. Though, IC50 of the extract showed significant difference only in singlet oxygen (1O2) and iron chelating activity when compared with the controls.

Conclusions

The extract is a potential source of antioxidants/free radical scavengers having important metabolites which maybe linked to its ethno-medicinal use.  相似文献   

7.

Background

This study tested the hypothesis that the core interthreshold zone (CIZ) changes during exposure to red or blue light via the non-visual pathway, because it is known that light intensity affects the central nervous system. We conducted a series of human experiments with 5 or 10 male subjects in each experiment.

Methods

The air temperature in the climatic chamber was maintained at 20 to 24°C. The subjects wore suits perfused with 25°C water at a rate of 600 cm3/min. They exercised on an ergometer at 50% of their maximum work rate for 10 to 15 minutes until sweating commenced, and then remained continuously seated without exercise until their oxygen uptake increased. The rectal temperature and skin temperatures at four sites were monitored using thermistors. The sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The subjects were exposed to red or blue light at 500 lx and 1000 lx in both summer and winter.

Results

The mean CIZs at 500 lx were 0.23 ± 0.16°C under red light and 0.20 ± 0.10°C under blue light in the summer, and 0.19 ± 0.20°C under red light and 0.26 ± 0.24°C under blue light in the winter. The CIZs at 1000 lx were 0.18 ± 0.14°C under red light and 0.15 ± 0.20°C under blue light in the summer, and 0.52 ± 0.18°C under red light and 0.71 ± 0.28°C under blue light in the winter. A significant difference (P <0.05) was observed in the CIZs between red and blue light at 1000 lx in the winter, and significant seasonal differences under red light (P <0.05) and blue light (P <0.01) were also observed at 1000 lx.

Conclusions

The present study demonstrated that dynamic changes in the physiological effects of colors of light on autonomic functions via the non-visual pathway may be associated with the temperature regulation system.  相似文献   

8.

Background

Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively.

Results

In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL).

Conclusions

These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.  相似文献   

9.

Introduction

Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes.

Methods

Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA.

Results

Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production.

Conclusions

These results show that mechanical stress, IL-1β and extracellular visfatin/NAMPT, all stimulated the expression and release of NGF by chondrocytes and thus suggest that the overexpression of visfatin/NAMPT and IL-1β in the OA joint and the increased mechanical loading of cartilage may mediate OA pain via the stimulation of NGF expression and release by chondrocytes.  相似文献   

10.
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.  相似文献   

11.

Background

Spirometric parameters are the mainstay for diagnosis of COPD, but cannot distinguish airway obstruction from emphysema. We aimed to develop a computer model that quantifies airway collapse on forced expiratory flow–volume loops. We then explored and validated the relationship of airway collapse with computed tomography (CT) diagnosed emphysema in two large independent cohorts.

Methods

A computer model was developed in 513 Caucasian individuals with ≥15 pack-years who performed spirometry, diffusion capacity and CT scans to quantify emphysema presence. The model computed the two best fitting regression lines on the expiratory phase of the flow-volume loop and calculated the angle between them. The collapse was expressed as an Angle of collapse (AC) which was then correlated with the presence of emphysema. Findings were validated in an independent group of 340 individuals.

Results

AC in emphysema subjects (N = 251) was significantly lower (131° ± 14°) compared to AC in subjects without emphysema (N = 223), (152° ± 10°) (p < 0.0001). Multivariate regression analysis revealed AC as best indicator of visually scored emphysema (R2 = 0.505, p < 0.0001) with little significant contribution of KCO, %predicted and FEV1, %predicted to the total model (total R2 = 0.626, p < 0.0001). Similar associations were obtained when using CT-automated density scores for emphysema assessment. Receiver operating characteristic (ROC) curves pointed to 131° as the best cut-off for emphysema (95.5% positive predictive value, 97% specificity and 51% sensitivity). Validation in a second group confirmed the significant difference in mean AC between emphysema and non-emphysema subjects. When applying the 131° cut-off, a positive predictive value of 95.6%, a specificity of 96% and a sensitivity of 59% were demonstrated.

Conclusions

Airway collapse on forced expiration quantified by a computer model correlates with emphysema. An AC below 131° can be considered as a specific cut-off for predicting the presence of emphysema in heavy smokers.  相似文献   

12.
Acetate oxidation in Italian rice field at 50 °C is achieved by uncultured syntrophic acetate oxidizers. As these bacteria are closely related to acetogens, they may potentially also be able to synthesize acetate chemolithoautotrophically. Labeling studies using exogenous H2 (80%) and 13CO2 (20%), indeed demonstrated production of acetate as almost exclusive primary product not only at 50 °C but also at 15 °C. Small amounts of formate, propionate and butyrate were also produced from 13CO2. At 50 °C, acetate was first produced but later on consumed with formation of CH4. Acetate was also produced in the absence of exogenous H2 albeit to lower concentrations. The acetogenic bacteria and methanogenic archaea were targeted by stable isotope probing of ribosomal RNA (rRNA). Using quantitative PCR, 13C-labeled bacterial rRNA was detected after 20 days of incubation with 13CO2. In the heavy fractions at 15 °C, terminal restriction fragment length polymorphism, cloning and sequencing of 16S rRNA showed that Clostridium cluster I and uncultured Peptococcaceae assimilated 13CO2 in the presence and absence of exogenous H2, respectively. A similar experiment showed that Thermoanaerobacteriaceae and Acidobacteriaceae were dominant in the 13C treatment at 50 °C. Assimilation of 13CO2 into archaeal rRNA was detected at 15 °C and 50 °C, mostly into Methanocellales, Methanobacteriales and rice cluster III. Acetoclastic methanogenic archaea were not detected. The above results showed the potential for acetogenesis in the presence and absence of exogenous H2 at both 15 °C and 50 °C. However, syntrophic acetate oxidizers seemed to be only active at 50 °C, while other bacterial groups were active at 15 °C.  相似文献   

13.

Background

Obstructive Sleep Apnea (OSAS) is a disease associated with the increase of cardiovascular risk and it is characterized by repeated episodes of Intermittent Hypoxia (IH) which inducing oxidative stress and systemic inflammation. Mitochondria are cell organelles involved in the respiratory that have their own DNA (MtDNA). The aim of this study was to investigate if the increase of oxidative stress in OSAS patients can induce also MtDNA alterations.

Methods

46 OSAS patients (age 59.27 ± 11.38; BMI 30.84 ± 3.64; AHI 36.63 ± 24.18) were compared with 36 control subjects (age 54.42 ± 6.63; BMI 29.06 ± 4.7; AHI 3.8 ± 1.10). In blood cells Content of MtDNA and nuclear DNA (nDNA) was measured in OSAS patients by Real Time PCR. The ratio between MtDNA/nDNA was then calculated. Presence of oxidative stress was evaluated by levels of Reactive Oxygen Metabolites (ROMs), measured by diacron reactive oxygen metabolite test (d-ROM test).

Results

MtDNA/nDNA was higher in patients with OSAS than in the control group (150.94 ± 49.14 vs 128.96 ± 45.8; p = 0.04), the levels of ROMs were also higher in OSAS subjects (329.71 ± 70.17 vs 226 ± 36.76; p = 0.04) and they were positively correlated with MtDNA/nDNA (R = 0.5, p < 0.01).

Conclusions

In OSAS patients there is a Mitochondrial DNA damage induced by the increase of oxidative stress. Intermittent hypoxia seems to be the main mechanism which leads to this process.  相似文献   

14.

Background

We investigated whether a relationship between small airways dysfunction and bronchial hyperresponsiveness (BHR), expressed both in terms of ease of airway narrowing and of excessive bronchoconstriction, could be demonstrated in asthma.

Methods

63 (36 F; mean age 42 yr ± 14) stable, mild-to-moderate asthmatic patients (FEV1 92% pred ±14; FEV1/FVC 75% ± 8) underwent the methacholine challenge test (MCT). The degree of BHR was expressed as PD20 (in μg) and as ∆FVC%. Peripheral airway resistance was measured pre- and post-MCT by impulse oscillometry system (IOS) and expressed as R5-R20 (in kPa sL−1).

Results

All patients showed BHR to methacholine (PD20 < 1600 μg) with a PD20 geometric (95% CI) mean value of 181(132–249) μg and a ∆FVC% mean value of 13.6% ± 5.1, ranging 2.5 to 29.5%. 30 out of 63 patients had R5-R20 > 0.03 kPa sL−1 (>upper normal limit) and showed ∆FVC%, but not PD20 values significantly different from the 33 patients who had R5-R20 ≤ 0.03 kPa sL−1 (15.8% ± 4.6 vs 11.5% ± 4.8, p < 0.01 and 156(96–254) μg vs 207 (134–322) μg, p = 0.382). In addition, ∆FVC% values were significantly related to the corresponding pre- (r = 0.451, p < 0.001) and post-MCT (r = 0.376, p < 0.01) R5-R20 values.

Conclusions

Our results show that in asthmatic patients, small airway dysfunction, as assessed by IOS, is strictly associated to BHR, expressed as excessive bronchoconstriction, but not as ease of airway narrowing.  相似文献   

15.

Background

Decreased physical activity is associated with higher mortality in subjects with COPD. The aim of this study was to assess clinical characteristics and physical activity levels (PALs) in subjects with COPD.

Methods

Seventy-three subjects with COPD (67 ± 7 yrs, 44 female) with one-second forced expiratory volume percentage (FEV1%) predicted values of 43 ± 16 were included. The ratio of total energy expenditure (TEE) and resting metabolic rate (RMR) was used to define the physical activity level (PAL) (PAL = TEE/RMR). TEE was assessed with an activity monitor (ActiReg), and RMR was measured by indirect calorimetry. Walking speed (measured over 30-meters), maximal quadriceps muscle strength, fat-free mass and systemic inflammation were measured as clinical characteristics. Hierarchical linear regression was applied to investigate the explanatory values of the clinical correlates to PAL.

Results

The mean PAL was 1.47 ± 0.19, and 92% of subjects were classified as physically very inactive or sedentary. The walking speed was 1.02 ± 0.23 m/s, the quadriceps strength was 31.3 ± 11.2 kg, and the fat-free mass index (FFMI) was 15.7 ± 2.3 kg/m2, identifying 42% of subjects as slow walkers, 21% as muscle-weak and 49% as FFM-depleted. The regression model explained 45.5% (p < 0.001) of the variance in PAL. The FEV1% predicted explained the largest proportion (22.5%), with further improvements in the model from walking speed (10.1%), muscle strength (7.0%) and FFMI (3.0%). Neither age, gender nor systemic inflammation contributed to the model.

Conclusions

Apart from lung function, walking speed and muscle strength are important correlates of physical activity. Further explorations of the longitudinal effects of the factors characterizing the most inactive subjects are warranted.  相似文献   

16.

Objectives

Our objective is to test the hypothesis that coronary endothelial function (CorEndoFx) does not change with repeated isometric handgrip (IHG) stress in CAD patients or healthy subjects.

Background

Coronary responses to endothelial-dependent stressors are important measures of vascular risk that can change in response to environmental stimuli or pharmacologic interventions. The evaluation of the effect of an acute intervention on endothelial response is only valid if the measurement does not change significantly in the short term under normal conditions. Using 3.0 Tesla (T) MRI, we non-invasively compared two coronary artery endothelial function measurements separated by a ten minute interval in healthy subjects and patients with coronary artery disease (CAD).

Methods

Twenty healthy adult subjects and 12 CAD patients were studied on a commercial 3.0 T whole-body MR imaging system. Coronary cross-sectional area (CSA), peak diastolic coronary flow velocity (PDFV) and blood-flow were quantified before and during continuous IHG stress, an endothelial-dependent stressor. The IHG exercise with imaging was repeated after a 10 minute recovery period.

Results

In healthy adults, coronary artery CSA changes and blood-flow increases did not differ between the first and second stresses (mean % change ±SEM, first vs. second stress CSA: 14.8%±3.3% vs. 17.8%±3.6%, p = 0.24; PDFV: 27.5%±4.9% vs. 24.2%±4.5%, p = 0.54; blood-flow: 44.3%±8.3 vs. 44.8%±8.1, p = 0.84). The coronary vasoreactive responses in the CAD patients also did not differ between the first and second stresses (mean % change ±SEM, first stress vs. second stress: CSA: −6.4%±2.0% vs. −5.0%±2.4%, p = 0.22; PDFV: −4.0%±4.6% vs. −4.2%±5.3%, p = 0.83; blood-flow: −9.7%±5.1% vs. −8.7%±6.3%, p = 0.38).

Conclusion

MRI measures of CorEndoFx are unchanged during repeated isometric handgrip exercise tests in CAD patients and healthy adults. These findings demonstrate the repeatability of noninvasive 3T MRI assessment of CorEndoFx and support its use in future studies designed to determine the effects of acute interventions on coronary vasoreactivity.  相似文献   

17.

Background

The simultaneous occurrence of metabolic syndrome and excessive daytime sleepiness are very common in obstructive sleep apnea (OSA) patients. Both conditions, if present in OSA, have been reported to be associated with inflammation and disruption of oxidative stress balance that impair the cardiovascular system. To verify the impact of daytime sleepiness on inflammatory and oxidative stress markers, we evaluated OSA patients without significant metabolic disturbance.

Methods

Thirty-five male subjects without diagnostic criteria for metabolic syndrome (Adult Treatment Panel III) were distributed into a control group (n = 10) (43 ± 10.56 years, apnea-hypopnea index - AHI 2.71 ± 1.48/hour), a non-sleepy OSA group (n = 11) (42.36 ± 9.48 years, AHI 29.48 ± 22.83/hour) and a sleepy OSA group (n = 14) (45.43 ± 10.06 years, AHI 38.20 ± 25.54/hour). Excessive daytime sleepiness was considered when Epworth sleepiness scale score was ≥ 10. Levels of high-sensitivity C-reactive protein, homocysteine and cysteine, and paraoxonase-1 activity and arylesterase activity of paraoxonase-1 were evaluated.

Results

Patients with OSA and excessive daytime sleepiness presented increased high-sensitivity C-reactive protein levels even after controlling for confounders. No significant differences were found among the groups in paraoxonase-1 activity nor arylesterase activity of paraoxonase-1. AHI was independently associated and excessive daytime sleepiness tended to have an association with high-sensitivity C-reactive protein.

Conclusions

In the absence of metabolic syndrome, increased inflammatory response was associated with AHI and daytime sleepiness, while OSA was not associated with abnormalities in oxidative stress markers.  相似文献   

18.

Background

Based on the ethnomedicinal uses and the effective outcomes of natural products in various diseases, this study was designed to evaluate Isodon rugosus as possible remedy in oxidative stress, alzheimer’s and other neurodegenerative diseases. Acetylecholinestrase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of crude methanolic extract (Ir.Cr), resultant fractions (n-hexane (Ir.Hex), chloroform (Ir.Cf), ethyl acetate (Ir.EtAc), aqueous (Ir.Aq)), flavonoids (Ir.Flv) and crude saponins (Ir.Sp) of I. rugosus were investigated using Ellman’s spectrophotometric method. Antioxidant potential of I. rugosus was determined using DPPH, H2O2 and ABTS free radicals scavenging assays. Total phenolic and flavonoids contents of plant extracts were determined and expressed in mg GAE/g dry weight and mg RTE/g of dry sample respectively.

Results

Among different fractions Ir.Flv and Ir.Cf exhibited highest inhibitory activity against AChE (87.44 ± 0.51, 83.73 ± 0.64%) and BChE (82.53 ± 0.71, 88.55 ± 0.77%) enzymes at 1 mg/ml with IC50 values of 45, 50 for AChE and 40, 70 μg/ml for BChE respectively. Activity of these fractions were comparable to galanthamine causing 96.00 ± 0.30 and 88.61 ± 0.43% inhibition of AChE and BChE at 1 mg/ml concentration with IC50 values of 20 and 47 μg/ml respectively. In antioxidant assays, Ir.Flv, Ir.Cf, and Ir.EtAc demonstrated highest radicals scavenging activities in DPPH and H2O2 assays which were comparable to ascorbic acid. Ir.Flv was found most potent with IC50 of 19 and 24 μg/ml against DPPH and H2O2 radicals respectively. Whereas antioxidant activates of plant samples against ABTS free radicals was moderate. Ir.Cf, Ir.EtAc and Ir.Cr showed high phenolic and flavonoid contents and concentrations of these compounds in different fractions correlated well to their antioxidant and anticholinestrase activities.

Conclusion

It may be inferred from the current investigations that the Ir.Sp, Ir.Flv and various fractions of I. rugosus are good sources of anticholinesterase and antioxidant compounds. Different fractions can be subjected to activity guided isolation of bioactive compounds effective in neurological disorders.  相似文献   

19.

Background

Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload.

Methods

Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d.

Results

Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls.

Conclusion

Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats.  相似文献   

20.

Background

Respiratory and speech problems are commonly observed in children with cerebral palsy (CP). The purpose of this study was to identify if inclination of seat surface could influence respiratory ability and speech production in children with spastic diplegic CP.

Methods

Sixteen children with spastic diplegic CP, ages 6 to 12 years old, participated in this study. The subjects’ respiratory ability (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximum phonation time (MPT)) were measured in three sitting conditions: a seat surface inclined 0°, anterior 15°, and posterior 15°.

Results

FVC was significantly different across three inclinations of seat surface, F(2, 45) = 3.81, P = 0.03. In particular, the subjects’ FVC at a seat surface inclined anterior 15° was significantly greater than at a seat surface inclined posterior 15° (P < 0.05). However, FEV1, PEF, and MPT were not significantly affected by seat surface inclination (P > 0.05).

Conclusions

The results suggest that anterior inclination of seat surface may provide a positive effect on respiratory function in children with spastic diplegic CP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号