首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Investigation into the effect of the reducing sugar of dextran on formation and stability of dextran-coated ultrasmall superparamagnetic iron oxides (USPIO) has demonstrated that reduction of the terminal reducing sugar can have a significant effect on particle size, coating stability, and magnetic properties. Four aspects of polysaccharide-coated USPIO particle synthesis were investigated: (i) the effect reduction of the terminal polysaccharide sugar has upon polysaccharide usage, particle size, stability, and magnetic susceptibility; (ii) the effect an exogenous reducing sugar can have upon particle synthesis; (iii) the effect the molecular weight of the reduced polysaccharide has on particle synthesis; and (iv) the effectiveness of reduced and native dextrans in stabilizing a preformed magnetic sol. For low molecular weight dextrans (MW 20,000 x 10(-6) cgs). Similar results were obtained with a 12 kDa pullulan. The effect of polysaccharide molecular weight on particle size was studied, wherein higher molecular weight reduced dextrans produced larger particles. The effectiveness of the reduced and native dextrans in stabilizing a preformed magnetic sol was compared. Reduced dextrans were found to be superior for stabilizing the magnetic sol. The observed effects of reduction of the terminal sugar in dextran compared with the native dextran were modeled using the Langmuir adsorption isotherm. A good fit of experimental data with this model was found.  相似文献   

2.
The thermoluminescence (TL) of nanoparticles has become a matter of keen interest in recent times but is rarely reported. This article reports the synthesis of ZnS:Mn nanocrystals using a chemical route, with mercaptoethanol (ME) as the capping agent. The particle sizes for the nanocrystals were measured by X‐ray diffraction (XRD) and also by studying transmission electron microscopy (TEM) patterns. The particle sizes of the synthesized samples were found to be between 1 and 3 nm. For samples with different concentrations of the capping agent, it was found that the TL intensity of the ZnS:Mn nanoparticles increased as the particle size decreased. A shift in the peak position of the TL glow curve was also seen with decreasing particle size. The TL intensity was found to be maximal for samples with 1.2% of Mn. A change in the peak position was not found for samples with different concentrations of Mn. The half‐width glow peak curve method was used to determine the trap‐depth. The frequency factor of the synthesized samples was also calculated. The stability of the charge carriers in the traps increases with decreasing nanoparticle size. The higher stability may be attributed to the higher surface/volume ratio and also to the increase in the trap‐depth with decreasing particle size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Apolipoprotein A-I (apoA-I) is an important ligand for the high density lipoprotein (HDL) scavenger receptor class B type I (SR-BI). SR-BI binds both free and lipoprotein-associated apoA-I, but the effects of particle size, composition, and apolipoprotein conformation on HDL binding to SR-BI are not understood. We have studied the effect of apoA-I conformation on particle binding using native HDL and reconstituted HDL particles of defined composition and size. SR-BI expressed in transfected Chinese hamster ovary cells was shown to bind human HDL(2) with greater affinity than HDL(3), suggesting that HDL size, composition, and possibly apolipoprotein conformation influence HDL binding to SR-BI. To discriminate between these factors, SR-BI binding was studied further using reconstituted l-alpha-palmitoyloleoyl-phosphatidylcholine-containing HDL particles having identical components and equal amounts of apoA-I, but differing in size (7.8 vs. 9.6 nm in diameter) and apoA-I conformation. The affinity of binding to SR-BI was significantly greater (50-fold) for the larger (9.6-nm) particle than for the 7.8-nm particle. We conclude that differences in apoA-I conformation in different-sized particles markedly influence apoA-I recognition by SR-BI. Preferential binding of larger HDL particles to SR-BI would promote productive selective cholesteryl ester uptake from larger cholesteryl ester-rich HDL over lipid-poor HDL.  相似文献   

5.
This paper presents a mathematical model explicitly reflecting the magnetic-field-induced transitions in a biologically significant process: n-hexane oxidation. The range of the magnetic field strength is found (0.05-0.3 T) with the trend indicating significant magnetic-field-induced change in the rates of reactions involving hexane (up to 50% at 0.2 T). The equations describing the effects of the magnetic field on the photoinduced free radical reaction of oxidation involving a lipid-modeling substance, hexane, are obtained on the basis of chemical kinetics and data from a batch experiment. The magnetic-field-induced changes in n-hexane oxidation are validated using the identification technique based on the real time input-output data in a separately conducted flow-through experiment.  相似文献   

6.
Analysis of the size distribution of nanocrystals is a critical requirement for the processing and optimization of their size-dependent properties. The common techniques used for the size analysis are transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). These techniques, however, are not suitable for analyzing the nanocrystal size distribution in a fast, non-destructive and a reliable manner at the same time. Our aim in this work is to demonstrate that size distribution of semiconductor nanocrystals that are subject to size-dependent phonon confinement effects, can be quantitatively estimated in a non-destructive, fast and reliable manner using Raman spectroscopy. Moreover, mixed size distributions can be separately probed, and their respective volumetric ratios can be estimated using this technique. In order to analyze the size distribution, we have formulized an analytical expression of one-particle PCM and projected it onto a generic distribution function that will represent the size distribution of analyzed nanocrystal. As a model experiment, we have analyzed the size distribution of free-standing silicon nanocrystals (Si-NCs) with multi-modal size distributions. The estimated size distributions are in excellent agreement with TEM and PL results, revealing the reliability of our model.  相似文献   

7.
Metallic nanoparticles display distinct localized surface plasmon resonance (LSPR) properties that depend on their size, shape, and composition and that can be monitored to characterize their growth. Utilizing LSPR properties, we report the first investigation of ambient temperature formation of trioctylamine (TOA)-stabilized spherical silver nanoparticles (AgNPs) of ~3.0-nm diameter by mild reduction of AgClO4 with the weak reducing agent heptamethyltrisiloxane in organic solvent. The appropriate choice of experimental conditions caused slow reduction, which allowed the study of the nanoparticle growth process by time-resolved UV–visible spectroscopy and transmission electron microscopy (TEM). The linear nanoparticle growth kinetics from 50 min to end of the reaction derived from LSPR changes, the absence of a bimodal size distribution during the initial stage of the reduction process from TEM analysis, and the single crystallinity of the resulting AgNPs suggested a diffusion-controlled Ostwald-ripening growth process. It was also found that in addition to its stabilizing ability, TOA acted as a catalyst and facilitated Ag+ reduction. Furthermore, a modest increase in reaction temperature caused a substantial enhancement in the AgNP formation rate, and low concentration of stabilizing ligand yielded an increase in size and dispersity.  相似文献   

8.
We introduce a robust and scale-flexible approach to macromolecule purification employing tailor-made magnetic adsorbents and high-gradient magnetic separation technology adapted from the mineral processing industries. Detailed procedures for the synthesis of large quantities of low-cost defined submicron-sized magnetic supports are presented. These support materials exhibit unique features, which facilitate their large-scale processing using high magnetic field gradients, namely sufficiently high magnetization, a relatively narrow particle size distribution and ideal superparamagnetism. Following systematic optimization with respect to activation chemistry, spacer length and ligand density, conditions for preparation of effective high capacity (Q(max) = 120 mg g(-1)) strongly interacting (Kd < 0.3 microm) trypsin-binding adsorbents based on immobilized benzamidine were established. In small-scale studies approximately 95% of the endogenous trypsin present in a crude porcine pancreatin feedstock was recovered with a purification factor of approximately 4.1 at the expense of only a 4% loss in alpha-amylase activity. Efficient recovery of trypsin from the same feedstock was demonstrated at a vastly increased scale using a high-gradient magnetic separation system to capture loaded benzamidine-linked adsorbents following batch adsorption. With the aid of a simple recycle loop over 80% of the initially adsorbed trypsin was recovered in-line with an overall purification factor of approximately 3.5.  相似文献   

9.
The graft copolymerization of styrene (ST), methyl methacrylate (MMA)/butyl acrylate (BA) with starch was carried chemically using ferrous ion-peroxide redox system. The grafting was performed at 60 °C and the monomer ratios of ST/MMA and ST/BA was varied with their % composition as 80/20, 50/50 and 20/80 parts by weight. The effect of initiator concentration, starch concentration and the monomer ratio on the grafting efficiency was studied. The grafted starch granules (GSG) were further analyzed for their particle size, bulk density and by sizing on cotton yarn for its physico-mechanical properties such as tensile strength, elongation at break, etc. The rheological properties of the resulting granular product in water as well as the starch graft copolymer emulsion were studied.  相似文献   

10.
Production of both nano-sized particles of crystalline pure phase magnetite and magnetite substituted with Co, Ni, Cr, Mn, Zn or the rare earths for some of the Fe has been demonstrated using microbial processes. This microbial production of magnetic nanoparticles can be achieved in large quantities and at low cost. In these experiments, over 1 kg (wet weight) of Zn-substituted magnetite (nominal composition of Zn0.6Fe2.4O4) was recovered from 30 l fermentations. Transmission electron microscopy (TEM) was used to confirm that the extracellular magnetites exhibited good mono-dispersity. TEM results also showed a highly reproducible particle size and corroborated average crystallite size (ACS) of 13.1 ± 0.8 nm determined through X-ray diffraction (N = 7) at a 99% confidence level. Based on scale-up experiments performed using a 35-l reactor, the increase in ACS reproducibility may be attributed to a combination of factors including an increase of electron donor input, availability of divalent substitution metal ions and fewer ferrous ions in the case of substituted magnetite, and increased reactor volume overcoming differences in each batch. Commercial nanometer sized magnetite (25–50 nm) may cost $500/kg. However, microbial processes are potentially capable of producing 5–90 nm pure or substituted magnetites at a fraction of the cost of traditional chemical synthesis. While there are numerous approaches for the synthesis of nanoparticles, bacterial fermentation of magnetite or metal-substituted magnetite may represent an advantageous manufacturing technology with respect to yield, reproducibility and scalable synthesis with low costs at low energy input.  相似文献   

11.
Tian L  Cao C  Pan Y 《Biometals》2012,25(1):193-202
Ferritin is not only important for iron storage and detoxification in living organisms, but a multifunctional size-constrained nanoplatform for biomimetic nanoparticles. In order to tailor the biomimetic nanoparticles for future applications, it is essential to investigate the effects of external factors such as temperature on the particle size and structure of reconstituted cores in ferritin. In this study, we systematically investigated the mineral composition, crystallinity, and particle size of human H-ferritin (HuHF) reconstituted at four different temperatures (25, 30, 37, and 42°C) by integrated magnetic and transmission electron microscopy analyses. Our results showed that the particle size of reconstituted ferrihydrite cores (~5 nm) in HuHF was temperature-independent. However, the significant changes of the induced magnetization at 5 T field (M5T) and remanent magnetization (Mr) at 5 K clearly showed that the crystallinity of reconstituted cores increased with increasing temperature, indicating that the reaction temperature deeply affects the structural order of reconstituted ferrihydrite cores rather than the particle size, and the reconstituted cores become more ordered at higher reaction temperatures. Our findings provide useful insights into biomineralization of ferritin under in vivo fever condition as well as in biomimetic synthesis of nanomaterials using ferritin. Furthermore, the rock magnetic methods should be very useful approaches for characterizing finite ferritin nanoparticles.  相似文献   

12.

Background

FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI.

Methods and Results

Hyperlipidemic and diabetic mice underwent carotid ligation to produce a macrophage-rich vascular lesion. In situ and ex vivo fluorescence imaging were performed at 48 hours after intravenous injection of FeCo/GC conjugated to Cy5.5 (n = 8, 8 nmol of Cy5.5/mouse). Significant fluorescence signal from FeCo/GC-Cy5.5 was present in the ligated left carotid arteries, but not in the control (non-ligated) right carotid arteries or sham-operated carotid arteries (p = 0.03 for ligated vs. non-ligated). Serial in vivo 3T MRI was performed at 48 and 72 hours after intravenous FeCo/GC (n = 6, 270 µg Fe/mouse). Significant T2* signal loss from FeCo/GC was seen in ligated left carotid arteries, not in non-ligated controls (p = 0.03). Immunofluorescence staining showed colocalization of FeCo/GC and macrophages in ligated carotid arteries.

Conclusions

FeCo/GC accumulates in vascular macrophages in vivo, allowing fluorescence and MR imaging. This multi-functional high-relaxivity nanoparticle platform provides a promising approach for cellular imaging of vascular inflammation.  相似文献   

13.
We developed a novel <50-microm thick nano-porous bi-layer latex coating for preserving Gluconobacter oxydans, a strict aerobe, as a whole cell biocatalyst. G. oxydans was entrapped in an acrylate/vinyl acetate co-polymer matrix (T (g) approximately 10 degrees C) and cast into 12.7-mm diameter patch coatings (cellcoat) containing approximately 10(9) CFU covered by a nano-porous topcoat. The oxidation of D-sorbitol to L-sorbose was used to investigate the coating catalytic properties. Intrinsic kinetics was studied in microbioreactors using a pH 6.0 D-sorbitol, phosphate, pyruvate (SPP) non-growth medium at 30 degrees C, and the Michaelis-Menten constants determined. By using a diffusion cell, cellcoat and topcoat diffusivities, optimized by arresting polymer particle coalescence by glycerol and/or sucrose addition, were determined. Cryo-FESEM images revealed a two-layer structure with G. oxydans surrounded by <40-nm pores. Viable cell density, cell leakage, and oxidation kinetics in SPP medium for >150 h were investigated. Even though the coatings were optimized for permeability, approximately 50% of G. oxydans viability was lost during cellcoat drying and further reduction was observed as the topcoat was added. High reaction rates per unit volume of coating (80-100 g/L x h) were observed which agreed with predictions of a diffusion-reaction model using parameters estimated by independent experiments. Cellcoat effectiveness factors of 0.22-0.49 were observed which are 20-fold greater than any previously reported for this G. oxydans oxidation. These nano-structured coatings and the possibility of improving their ability to preserve G. oxydans viability may be useful for engineering highly reactive adhesive coatings for multi-phase micro-channel and membrane bioreactors to dramatically increase the intensity of whole-cell oxidations.  相似文献   

14.
A magnetic fluid was synthesized by oxidation of ferrous ions (Fe2&+) in the presence of a synthetic alternating copolymer of polyethylene glycol (PEG) and maleic acid (MA), poly(PEG-MA). The magnetic fluid dispersed stably both in aqueous solution and in organic solvents. Its particle size was approximately 10 nm. The magnetic fluid was mixed with lipase in water, followed by lyophilization. Although the enzyme and the magnetic fluid were dissociated in aqueous solution, they remained associated in organic solvents such as benzene. The magnetic fluid-adsorbed lipase dispersed in benzene and exerted high enzymic activity (2.9 μmol min−1 mg−1 lyophilized powder) for lauryl laurate synthesis from lauric acid and lauryl alcohol, and was readily recovered from the reaction mixture in a magnetic field (6000 Oe) without loss of enzymic activity.  相似文献   

15.
Magnetic susceptibility measurements on cobalt(II) stellacyanin (Rhus vernicifera) have been performed between 2.2 and 50 K. The effective magnetic moment of Co(II) in the protein is 3.91 ± 0.12 (μB). Nonlinear behavior below 3 K evidences the presence of zero-field splitting attributable to a low-symmetry component of the ligand field. The results are consistent with a structural model based on a distorted tetrahedral Co(II) site involving one or more extremely covalent metal-ligand bonds.  相似文献   

16.
Besides the multifunctionality, another equally important aspect of nanoparticles is their engineerability to control the geometrical and chemical properties during fabrication. In this work, we exploited this aspect to define asymmetric surface chemistry of an iron oxide nanosphere by controlling the topology of ligand expression on its surface resulting in a particle with two faces, one displaying only amines and the other only thiols. Specifically, amine-functionalized iron oxide nanospheres were attached on a solid support via a crosslinker containing a disulfide bridge. Liberation of the nanosphere using thiolytic cleavage created thiols on the portion of the particle's surface that interacted with the solid support. Employing a solid-phase strategy and a step-by-step addition of particles, the two unique faces on the same nanosphere served as fittings to assemble them into linear nano-chains. Assembly of chains with various lengths and aspect ratios was controlled by the size and number of the added nanospheres. The characteristics of those chains showed a high degree of uniformity indicating the exceptional control of the synthetic process. Notably, one of the unique properties of the iron oxide nano-chains was an increased magnetic relaxivity, indicating their potential use as contrast agents for magnetic resonance imaging.  相似文献   

17.
The use of 2,2'-dithiodibenzaldehyde (DTDB) as a reactant for incorporating thiolate donors into the coordination sphere of a transition metal complex without the need for protecting groups is expanded to include the synthesis of complexes with pentadentate ligands. The ligand N,N'-bis(thiosalicylideneimine)-2,2'-thiobis(ethylamine) (tsaltp) is synthesized at a cobalt center by the reaction of DTDB with a Co complex of thiobis(ethylamine). The resulting Co complexes are thus coordinated by the N(2)S(3) pentadentate ligand through two imine N atoms, two thiolate S atoms, and one thioether S atom. A dimeric, bis-thiolate-bridged complex (1) is isolated and converted to a monomeric CN adduct (2) by treatment with KCN. The N(2)S(3) coordination environment provided by the tsaltp ligand is similar to that provided by the protein donors at the active site of the nitrile hydratase enzymes, with 2 being the first octahedral Co complex reported with such a coordination sphere.  相似文献   

18.
The kinetics of agglomeration of proteins precipitating in a viscous solution was measured by light scattering. The resulting transitory maximum was linearly proportional to the mass of protein over three orders of magnitude. The change in scattering intensity is described as a change in scattering symmetry due to a continuous in particle size.This method is both fast (minutes) and sensitive (30 ng protein) and is independent of the chemical composition of the different protein species and is barely influenced by size and shape of the proteins.By solubilising the protein in an alkaline dedecyl sulfate solution this method can be applied to all types of biological samples (e.g. tissue homogenates proteins) and also to all types of biological preparations containing detergents as well as urea, sucrose, salts and lipids.  相似文献   

19.
Diosgenin (DSG), a well-known steroid sapogenin derived from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright, has a variety of bioactivities. However, it shows low oral bioavailability due to poor aqueous solubility and strong hydrophobicity. The present study aimed to develop DSG nanocrystals to increase the dissolution and then improve the oral bioavailability and biopharmaceutical properties of DSG. DSG nanocrystals were prepared by the media milling method using a combination of pluronic F127 and sodium dodecyl sulfate as surface stabilizers. The physicochemical properties of the optimal DSG nanocrystals were characterized using their particle size distribution, morphology, differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy data, and solubility and dissolution test results. Pharmacokinetic studies of the DSG coarse suspension and its nanocrystals were performed in rats. The particle size and polydispersity index of DSG nanocrystals were 229.0?±?3.7 nm and 0.163?±?0.064, respectively. DSG retained its original crystalline state during the manufacturing process, and its chemical structure was not compromised by the nanonizing process. The dissolution rate of the freeze-dried DSG nanocrystals was significantly improved in comparison with the original DSG. The pharmacokinetic studies showed that the AUC0–72h and C max of DSG nanocrystals increased markedly (p?<?0.01) in comparison with the DSG coarse suspension by about 2.55- and 2.01-fold, respectively. The use of optimized nanocrystals is a good and efficient strategy for oral administration of DSG due to the increased dissolution rate and oral bioavailability of DSG nanocrystals.  相似文献   

20.
The magnetic properties of Co–Ni alloys nanoparticles with composition Co80Ni20 and Co50Ni50 and dispersed in a silica matrix are investigated. The effective magnetic anisotropies are evaluated from the analysis of the temperature dependence of the zero-field-cooling magnetizations and from the hysteresis loops at 3 K considering the coherent rotation model. The results show that, on the contrary of what expected, Co80Ni20 nanoparticles have smaller anisotropy than the Co50Ni50 one showing that the magnetic properties of the system can be tuned from soft to hard by simply adjusting the alloy composition. This behaviour can be explained on the basis of the different size and composition of the two systems. Moreover we found that the evaluation of the anisotropy constant depends on the experimental method adopted due to the modifications by interparticle dipolar interactions of the reversal process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号