首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Salton Sea is one of the few saline, inland lakes in the world with a population of barnacles, Balanus amphitrite. It is also one of California’s most impaired water bodies due to excessive nutrient loading which leads to phytoplankton blooms and low dissolved oxygen. Currently, B. amphitrite growth is limited due to lack of hard substrate in and around the Sea. We have hypothesized that artificial substrate could support the growth of B. amphitrite and their filter-feeding would lead to improved water quality. Periodic harvesting of the barnacles would result in the permanent removal of nitrogen and phosphorus from the Sea. A 44-day in-situ experiment was carried out in the Salton Sea to assess the rate of barnacle growth and phosphorus and nitrogen sequestration on burlap sheets suspended vertically from a floating line. Burlap panels were collected weekly and the barnacles analyzed for Ca, total-P, inorganic-P, total-N, total-C, CaCO3, and organic matter content. After 44 days of growth, the barnacle mats weighed 7.4 kg m−2 on a dry weight basis, with 80% of the mass as shell material. The nutrient sequestration was 9.4 g P m−2 and 100 g N m−2. Approximately half of the P was inorganic and appears to be coprecipitated with the calcium carbonate shell material. Results indicate that harvesting barnacles grown on artificial substrate in the Salton Sea would not be an effective method for removing N or P from the lake because of the relative proportions of shell material and organic material. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

2.
Benthic nutrient fluxes in a eutrophic,polymictic lake   总被引:2,自引:0,他引:2  
Sediment release rates of soluble reactive phosphorus (SRP) and ammonium (NH4) were determined seasonally at three sites (water depth 7, 14 and 20 m) in Lake Rotorua using in situ benthic chamber incubations. Rates of release of SRP ranged from 2.2 to 85.6 mg P m−2 d−1 and were largely independent of dissolved oxygen (DO) concentration. Two phases of NH4 release were observed in the chamber incubations; high initial rates of up to 2,200 mg N m−2 d−1 in the first 12 h of deployment followed by lower rates of up to 270 mg N m−2 d−1 in the remaining 36 h of deployment. Releases of SRP and NH4 were highest in summer and at the deepest of the three sites. High organic matter supply rates to the sediments may be important for sustaining high rates of sediment nutrient release. A nutrient budget of Lake Rotorua indicates that internal nutrient sources derived from benthic fluxes are more important than external nutrient sources to the lake.  相似文献   

3.
Nuisance biomass levels of periphytic algae in streams   总被引:3,自引:3,他引:0  
Relative coverage of filamentous periphytic algae increased with chlorophyll a (chl a) biomass on natural substrata in 22 northwestern United States and Swedish streams. A biomass range of 100–150 mg chl a m−2 may represent a critical level for an aesthetic nuisance; below those levels, filamentous coverage was less than 20%. Other indices of water quality (dissolved oxygen content and measures of benthic macroinvertebrate diversity) were apparently unaffected by periphytic biomass or filamentous coverage in these streams. Neither was biomass related to limiting nutrient content (soluble reactive phosphorus, SRP), as has been observed in previous experiments using bare rocks in streams and slides in artificial channels. Ambient SRP concentration may not be a useful predicter of periphyton accrual on natural substrates, due to uptake and recycling of P throughout the stream and undetermined losses such as sloughing and grazing.  相似文献   

4.
The Salton Sea, California's largest inland water body, is an athalassic saline lake with an invertebrate fauna dominated by marine species. The distribution and seasonal dynamics of the benthic macroinvertebrate populations of the Salton Sea were investigated during 1999 in the first survey of the benthos since 1956. Invertebrates were sampled from sediments at depths of 2–12 m, shallow water rocky substrates, and littoral barnacle shell substrates. The macroinvertebrates of the Salton Sea consist of a few invasive, euryhaline species, several of which thrive on different substrates. The principal infaunal organisms are the polychaetes Neanthes succinea Frey & Leuckart and Streblospio benedicti Webster, and the oligochaetes Thalassodrilides gurwitschi Cook, T. belli Hrabe, and an enchytraeid. All but Neanthes are new records for the Sea. Benthic crustacean species are the amphipods Gammarus mucronatus Say, Corophium louisianum Shoemaker, and the barnacle Balanus amphitrite Darwin. Neanthes succinea is the dominant infaunal species on the Sea bottom at depths of 2–12 m. Area-weighted estimates of N. succinea standing stock in September and November 1999 were two orders of magnitude lower than biomass estimated in the same months in 1956. During 1999, population density varied spatially and temporally. Abundance declined greatly in offshore sediments at depths >2 m during spring and summer due to decreasing oxygen levels at the sediment surface, eventually resulting in the absence of Neanthes from all offshore sites >2 m between July and November. In contrast, on shoreline rocky substrate, Neanthes persisted year round, and biomass density increased nearly one order of magnitude between January and November. The rocky shoreline had the highest numbers of invertebrates per unit area, exceeding those reported by other published sources for Neanthes, Gammarus mucronatus, Corophium louisianum, and Balanus amphitrite in marine coastal habitats. The rocky shoreline habitat is highly productive, and is an important refuge during periods of seasonal anoxia for Neanthes and for the other invertebrates that also serve as prey for fish and birds.  相似文献   

5.
Benthic phosphorus regeneration in the Potomac River Estuary   总被引:2,自引:2,他引:0  
Callender  Edward 《Hydrobiologia》1982,91(1):431-446
The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment.In situ benthic fluxes (0.1 to 2.0 mmoles m−2 day−1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m−2 day−1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Bothin situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980.  相似文献   

6.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

7.
The Salton Sea is the largest lake, on a surface area basis, in California (939 km2). Although saline (>44 g/l) and shallow (mean depth approximately 9.7 m), it provides valuable habitat for a number of endangered species. The distribution of sediments and their properties within the Salton Sea are thought to have significant influence on benthic ecology and water quality. Sediment properties and their distribution were quantified and compared with predicted distributions using several sediment distribution models. Sediment samples (n = 90) were collected using a regular staggered-start sampling grid and analyzed for water content, organic carbon (C), calcium carbonate, total nitrogen (N), total phosphorus (P), organic phosphorus, and other properties. Water content, total N, and total and organic P concentrations were all highly correlated with organic C content. The organic C concentration showed a non-linear increase with depth, with low organic C contents (typically 1–2%) present in sediments found in depths up to 9 m, followed by a strong increase in organic C at greater depths (to about 12% at 15 m depth). The models of Hakanson, Rowan et al., Blais and Kalff, and Carper and Bachmann yielded very different predicted critical depths for accumulation (10.5–22.8 m) and areas of accumulation (0–49.5%). Hakanson’s dynamic ratio model more reasonably reproduced the observed zone of elevated organic C concentrations in the Salton Sea than either exposure- or slope-based equations. Wave theory calculations suggest that strong winds occurring less than 1% of the time are sufficient to minimize accumulation of organic matter in sediments that lie at depths less than 9 m in this system. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

8.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.  相似文献   

9.
Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25–50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17–63% and increase Secchi depths (SD) by 38–97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70–90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005.  相似文献   

10.
Studies on biogeochemical cycling of carbon in the Chilka Lake, Asia’s largest brackish lagoon on the east coast of India, revealed, for the first time, strong seasonal and spatial variability associated with salinity distribution. The lake was studied twice during May 2005 (premonsoon) and August 2005 (monsoon). It exchanges waters with the sea (Bay of Bengal) and several rivers open into the lake. The lake showed contrasting levels of dissolved inorganic carbon (DIC) and organic carbon (DOC) in different seasons; DIC was higher by ∼22% and DOC was lower by ∼36% in premonsoon than in monsoon due to seasonal variations in their supply from rivers and in situ production/mineralisation. The DIC/DOC ratios in the lake during monsoon were influenced by physical mixing of end member water masses and by intense respiration of organic carbon. A strong relationship between excess DIC and apparent oxygen utilisation showed significant control of biological processes over CO2 production in the lake. Surface partial pressure of CO2 (pCO2), calculated using pH–DIC couple according to Cai and Wang (Limnol and Oceanogr 43:657–668, 1998), exhibited discernable gradients during monsoon through northern (1,033–6,522 μatm), central (391–2,573 μatm) and southern (102–718 μatm) lake. The distribution pattern of pCO2 in the lake seems to be governed by pCO2 levels in rivers and their discharge rates, which were several folds higher during monsoon than premonsoon. The net CO2 efflux, based on gas transfer velocity parameterisation of Borges et al. (Limnol and Oceanogr 49(5):1630–1641, 2004), from entire lake during monsoon (141 mmolC m−2 d−1 equivalent to 2.64 GgC d−1 at basin scale) was higher by 44 times than during premonsoon (9.8 mmolC m−2 d−1 ≈ 0.06 GgC d−1). 15% of CO2 efflux from lake in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (−308 mmolC m−2 d−1 ≈ −3.77 GgC d−1) was found to be almost in consistent with the total riverine organic carbon trapped in the lake (229 mmolC m−2 d−1 ≈ 2.80 GgC d−1) suggesting that the strong heterotrophy in the lake is mainly responsible for elevated fluxes of CO2 during monsoon. Further, the pelagic net community production represented 92% of NEP and benthic compartment plays only a minor role. This suggests that Chilka lake is an important region in biological transformation of organic carbon to inorganic carbon and its export to the atmosphere.  相似文献   

11.
Under optimal nutrient conditions, both Microcystis sp. and Anabaena sp. isolated from Lake Biwa grew optimally at 28–32°C but differed in maximal growth rates, phosphate uptake kinetics, maximal phosphorus quotas, and growth responses to nitrogen and phosphorus limitation. The maximal growth rates of Microcystis and Anabaena were 1.6 and 1.25 divisions day−1, respectively. With phosphate and nitrate in the growth-limiting range, the growth of Microcystis was optimal at an N : P ratio of 100 : 1 (by weight) and declined at lower (nitrogen limitation) and higher (phosphorus limitation) ratios. In contrast, Anabaena growth rates did not change at N : P ratios from 1000 : 1 to 10 : 1. Starting with cells containing the maximal phosphorus quota, Microcystis growth in minus-phosphorus medium ceased in 7–9 days, compared with 12–13 days for Anabaena. The phosphate turnover time in cultures starved to their minimum cell quotas was 7.9 min for Microcystis and 0.6 min for Anabaena. Microcystis had a higher K s (0.12 μg P l−1 10−6 cells) and lower V max (9.63 μg P l−1 h−1 10−6 cells), than Anabaena (K s 0.02 μg P l−1 h−1 10−6 cells; V max 46.25 63 μg P l−1 h−1 10−6 cells), suggesting that Microcystis would not be able to grow well in phosphorus-limited waters. We conclude that in spite of the higher growth rate under ideal conditions, Microcystis does not usually bloom in the North Basin because of low availability of phosphorus and nitrogen. Although Anabaena has an efficient phosphorus-uptake system, its main strategy for growth in low-phosphorus environments may depend on storage of phosphorus during periods of abundant phosphorus supply, which are rare in the North Basin. Received: July 31, 2000 / Accepted: October 18, 2000  相似文献   

12.
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100–595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March–June 2008) to open-water conditions in summer (June–August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 μm) varied significantly among sites (1.2–6.4 g C m−2 in spring, 1.1–12.6 g C m−2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9–33.2 mg C m−2 day−1 in spring, 11.6–44.4 mg C m−2 day−1 in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.  相似文献   

13.
The feeding dynamics and oxygen uptake of the bottom-dwelling caridean shrimp Nauticaris marionis were studied during the April/May 1984, 1996 and 1997 cruises to Marion Island (Prince Edward Islands, Southern Ocean). N. marionis is thought to have an opportunistic feeding mode. Prey composition varied considerably between the years and sites investigated. Overall, benthic (mainly hydrozoans and bottom-dwelling polychaetes) and, at times, pelagic (largely euphausiids and copepods) prey items dominated in the stomachs of N. marionis both by occurrence and by volume. Generally, pelagic prey contributed more to the diets of smaller shrimps, while benthic prey was a more important component in the guts of larger specimens. Wet, dry and ash-free dry weight were determined for specimens used in respiration experiments. The respiration rates of N. marionis females with carapace length 6.6–11.1 mm ranged from 80 to 250 μl O2 individual−1 · h−1, or from 0.588 to 2.756 μl O2 · mg−1 dry weight h−1. Regression analyses showed highly significant correlations between oxygen consumption and carapace length for N. marionis. Daily ingestion rates estimated using an in situ gut content analysis technique (4.4% of body dry weight) and an energy budget approach (average 4.7% of body dry weight, range 2.0–7.5%) showed good agreement with each other. Accepted: 29 July 1998  相似文献   

14.
The Salton Sea is a highly saline lake that has long supported sportfishery and large populations of fish-eating birds. A study was initiated in 1999 to assess the status of orangemouth corvina (Cynoscion xanthulus), bairdiella (Bairdiella icistia) and tilapia (Oreochromis mossambicus × O. urolepis). Multimesh (50 × 2 m) gillnets were set at nine stations in 1999, ten stations in 2000 and six stations in 2002. These stations were sampled every two months in 1999, every three months in 2000 and once in 2002. O. mossambicus was the most abundant of the four species, with a maximum mean catch per unit effort (CPUE) 13.8 kg net−1 h−1 or 29.9 fish net−1 h−1 being observed at the river mouth stations in August 1999. From spring to summer, tilapia CPUE increased at nearshore and river mouth stations and decreased at pelagic stations, apparently reflecting migration away from midlake areas in response to anoxia or hypoxia caused by periodic springtime overturn events in deep waters. Tilapia catches in nearshore, river mouth and pelagic habitats were 83 and 60% males in 1999 and 2000, respectively. Tilapia catches in rivers in August 1999 averaged only 6% male. During 1999–2000, the tilapia population consisted essentially of only the 1995 and 2000 year classes. Harsh conditions at the Salton Sea have led to erratic reproduction and survival rates and unstable age structures for its resident fishes. Massive parasite infestations of fry and physiological stressors such as anoxia, high sulfide levels, high salinity and high and low temperatures are potential causes of the irregular recruitment and periodic dieoffs of tilapia. The abundance of all fish species declined over the years of study. Between 1999 and 2002, the late summer mean CPUEs for tilapia, bairdiella and orangemouth corvina at four nearshore stations dropped from 16 fish to 0.02 fish, from 4.7 fish net to 0.23 fish, and from 0.08 fish to 0.02 fish, respectively. During 2000–2003, parallel declines occurred in estimated numbers of adult fish involved in mass mortality events at the Sea. The boom-and-bust dynamics of tilapia and other fish populations in the Sea have major consequences for fish-eating bird populations, for other components of the ecosystem, and for the recreational value of the lake. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

15.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

16.
Fluxes of dissolved oxygen and ammonium across the water sediment interface were measured in a control and in an experimental area farmed with the clam Tapes philippinarum. Young clams were seeded in March 2003 at mean (~500 ind m−2) and high (~1500 ind m−2) densities in a sandy area (2100 m2) of the Sacca di Goro Lagoon, Italy. Approximately every two months, until October 2003, intact sediment cores were collected and incubated in the light and in the dark and surface sediments (0–2 cm) were analysed for organic matter and nitrogen content. Clams farming induced pronounced changes in sediment characteristics and metabolism. Oxygen consumption and ammonium production at the high density area were, on average, 3 to 4 and 1.9 to 4.9 folds higher than those measured in the control field respectively; rates were positively correlated with clams biomass. Experimental fields resulted “Net and Total Heterotrophyc” in 3 out of 4 sampling dates and clams were the major factor shifting the benthic system towards this status. In only one occasion the appearance of the macroalgae Ulva spp. pushed the system rapidly towards hyperautotrophic conditions. Our results indicated that clams have the potential to drive benthic metabolism in farmed areas and to sustain macroalgal growth through regeneration of a limiting nutrient for seawater as inorganic N.  相似文献   

17.
Nitrogen and phosphorous exchange at the water–sediment interface is controlled both by complex physico-chemical factors and biological processes. Zoobenthos excretion is one of the most important processes in the mineralization of sedimented organic mater. In polluted freshwaters, tubificid worms are among the dominant components of the benthic community. Rates of ammonium and inorganic phosphate excretion by tubificids were experimentally assessed. They were related to the tubificid abundance in a stream ecosystem polluted with municipal and industrial wastewater. The relationship between these rates and temperature were investigated within the range of 4–23 °C. Relatively constant excretion rates were obtained for both nutrients in the first 8 h of excretion, ranging between 0.076 and 0.226 μg N mg d.w.−1 h−1 and 0.0065–0.01 μg P mg d.w.−1 h−1, respectively. Q10 values of 2.52 for ammonium and 1.31 for phosphate were calculated. If we presume that all excreta eventually enters the water column, then we can calculate that these invertebrates potentially add 39.17 mg N m−2 day−1 and 0.49 mg P m−2 day−1. These values accounts for 17.16 and 7.56% of the nutrient load in the river water, respectively.  相似文献   

18.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

19.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

20.
A study was conducted in Mona Lake, a small eutrophic lake located in western Michigan (USA) to address the temporal and spatial variability of external and internal phosphorus loading. External P load varied among subbasins, which was mostly related to discharge, but also to land use. Black Creek, which drains lands with natural cover and agriculture, accounted for the majority of flow, and total phosphorus (TP) and soluble reactive phosphorus (SRP) load, to Mona Lake. However, the relative contribution of SRP load was greater in Little Black Creek, which flows through a mostly urbanized subbasin, than in Black Creek. The relative importance of internal loading was strongly related to season, as internal TP loads contributed only ∼9% of the overall P load in April 2005, but ∼68–82% of the overall P load in the summer and early fall seasons. Internal TP and SRP loading was greater under anaerobic than aerobic conditions. Mean anaerobic TP release rates ranged from 0.80 to 15.56 mg P m−2 d−1, varying with site and season. Spatial variability in both internal phosphorus loading and sediment P concentration was also evident. By taking into account the spatial and temporal variability of different loading sources, management practices can be targeted to optimize nutrient source control strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号