首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The content, composition and structure of proteoglycans (PGs) in adult human laryngeal cartilage (HLC) were investigated. PGs were extracted from the tissue by using two different extraction protocols. In the first protocol, PGs were extracted under dissociative conditions, 4 M guanidine HCl (GdnHCl), and in the second protocol, sequentially, with phosphate buffered saline (PBS) and solutions of increasing GdnHCl concentration (0.5, 1, 2 and 4 M). Chemical and immunological analyses of dissociate extracts (first protocol) revealed the presence of four, at least, different types of PGs. Aggrecan was the major PG, versican, decorin and biglycan being in small amounts. Galactosaminoglycan-containing PGs (GalAGPGs) represented the vast majority of total PGs present in extracts of HLC. Differential digestion with chondroitinase ABC and AC II showed that the GalAGPGs from HLC contained a significant proportion of dermatan sulphate (DS). In addition, disaccharide analysis showed that 6-sulphated disaccharides predominated in chondroitin sulphate (CS) chains. The sequential extraction (second protocol) indicated that PBS extract contained very little amount of PGs. The 0.5, 1 and 2 M GdnHCl extracts contained 6.3%, 24.5% and 15.2% of total extracted PGs, respectively. Four molar GdnHCl extracted the larger proportion, about 53%, of total PGs. This extract contained almost only proteoglycan aggregate components i.e., G1 bearing aggrecan, hyaluronan and link protein. The characterization of the aggrecan showed that it constituted a polydisperse population of monomers with an average molecular mass of 720 kDa. The glycosaminoglycans (GAGs) present were chondroitin sulphate with a M(r) of 15 kDa, and keratan sulphate (KS) with a M(r) of 10 kDa, in proportions 84% and 16%, respectively.  相似文献   

2.
We investigated the effect of mechanical stimulation by an intermittent compressive force (ICF) on proteoglycan (PG) synthesis and PG structure in calcified and noncalcified cartilage of fetal mouse long bone rudiments. Uncalcified cartilaginous long bone rudiments were cultured for 5 days in the presence of [35S]sulfate and [3H]glucosamine under control conditions (atmospheric pressure) or under the influence of ICF. ICF was generated by intermittently compressing the gas phase above the culture medium (130 mbar, 0.3 Hz). During culture, the center of the rudiments started to calcify. ICF stimulated calcification such that, after 5 days, the diaphysis of calcified cartilage was about two times as long as in the control cultures. At the end of the experiment, the rudiments were divided in a central calcified diaphysis and two noncalcified epiphyses. Diaphysis and epiphyses were pooled separately. PGs were extracted with 4 M guanidinium chloride and isolated by cesium chloride density gradient centrifugation. PGs (predigested with proteinase K or chondroitinase ABC) were characterized for hydrodynamic size of aggregates, monomers, and chondroitin sulfate chains by gel permeation chromatography and for degree of sulfation by ion exchange chromatography on high pressure liquid chromatography columns. ICF increased the amount of incorporated sulfate per tissue volume unit in the noncalcified epiphyses, but decreased this parameter in the calcified diaphysis. However, in both calcified and noncalcified cartilage, ICF increased the degree of sulfation of the chondroitin sulfate chains. No effects were found on the hydrodynamic size of the PG aggregates or monomers, but in the epiphyses ICF increased the size of the chondroitin sulfate chains. No other changes of structural characteristics of the macromolecules were observed. This study demonstrates that ICF generally stimulated the incorporation of [35S]sulfate into chondroitin sulfate chains. We conclude from the lowered [35S]sulfate content in calcified cartilage that ICF reduced the number of chondroitin sulfate chains and probably PGs while accelerating matrix calcification. It seems likely that the two effects are linked, indicating that a reduction of the number of chondroitin sulfate chains is part of the complicated process of cartilage calcification.  相似文献   

3.
The basal rate of in vitro proteoglycan (PG) synthesis in explants of equine articular cartilage was subject to considerable variation in animals of the same age but was greater in younger than older animals. Synthesis of PGs in explant cultures was stimulated by a synthetic link peptide, identical in sequence to the N-terminus of the link protein (LP) of PG aggregates, in a similar manner to that demonstrated previously for human articular cartilage [Biochem. Soc. Trans. 25 (1997) 427; Arthritis Rheum. 41 (1998) 157]. Stimulation occurred in tissue from animals ranging from 1 to 30 years old but older animals required higher concentrations of peptide to produce a measurable response. Synthesis of PGs increased in a concentration-dependent manner and was paralleled by increases in the ability of aggrecan monomers to form aggregates with hyaluronan (HA). In addition to its effect on synthesis of PGs, link peptide also increased synthesis of both aggrecan and LP mRNA. Cartilage explant and chondrocyte cultures secreted small amounts of biologically active interleukin 1 (IL 1) and secretion of this cytokine was reduced considerably by the addition of link peptide. Reduction in the activity of this catabolic cytokine coupled with the increased synthesis of mRNA for aggrecan and link peptide may be the mechanism by which link peptide exerts its positive effect on the rate of PG synthesis in articular cartilage.  相似文献   

4.
Proteoglycans (PGs) are implicated in the growth and progression of malignant tumors. In this study, we examined the concentration and localization of PGs in advanced (stage IV) laryngeal squamous cell carcinoma (LSCC) and compared with human normal larynx (HNL). LSCC and HNL sections were examined immunohistochemically with a panel of antibodies, and tissues extracts were analyzed by biochemical methods including immunoblotting and high performance liquid chromatography (HPLC). The results demonstrated significant destruction of cartilage in LSCC, which was followed by marked decrease of aggrecan and link protein. In contrast to the loss of aggrecan in LSCC, accumulation of versican and decorin was observed in the tumor-associated stroma. Biochemical analyses indicated that aggrecan, versican, decorin and biglycan comprise the vast majority of total PGs in both healthy and cancerous tissue. In LSCC the absolute amounts of KS/CS/DS-containing PGs were dramatically decreased about 18-fold in comparison to HNL. This decrease is due to the loss of aggrecan. Disaccharide analysis of CS/DSPGs from LSCC showed a significant reduction of 6-sulfated Delta-disaccharides (Deltadi-6S) with a parallel increase of 4-sulfated Delta-disaccharides (Deltadi-4S) as compared to HNL. The obtained data clearly demonstrate that tumor progression is closely related to specific alteration of matrix PGs in LSCC. The altered composition of PGs in cartilage, as well as in tumor-associated stroma, is crucial for the biological behaviour of cancer cells in the diseased tissue.  相似文献   

5.
The proportion of total tissue hyaluronan involved in interactions with aggrecan and link protein was estimated from extracts of canine knee articular cartilages using a biotinylated hyaluronan binding region-link protein complex (bHABC) of proteoglycan aggregate as a probe in an ELISA-like assay. Microscopic sections were stained with bHABC to reveal free hyaluronan in various sites and zones of the cartilages. Articular cartilage, cut into 20 m-thick sections, was extracted with 4 M guanidinium chloride (GuCl). Aliquots of the extract (after removing GuCl) were assayed for hyaluronan, before and after papain digestion. The GuCl extraction residues were analyzed after solubilization by papain. It was found that 47–51% of total hyaluronan remained in the GuCl extraction residue, in contrast to the 8–15% of total proteoglycans. Analysis of the extract revealed that 24–50% of its hyaluronan was directly detecable with the probe, while 50–76% became available only after protease digestion. The extracellular matrix in cartilage sections was stained with the bHABC probe only in the superficial zone and the periphery of the articular surfaces, both sites known to have a relatively low proteoglycan concentration. Trypsin pretreatment of the sections enhanced the staining of the intermediate and deep zones, presumably by removing the steric obstruction caused by the chondroitin sulfate binding region of aggrecans. Enhanced matrix staining in these zones was also obtained by a limited digestion with chondroitinase ABC. The results indicate that a part of cartilage hyaluronan is free from endogenous binding proteins, such as aggrecan and link protein, but that the chondroitin sulfate-rich region of aggrecan inhibits its probing in intact tissue sections. Therefore, hyaluronan staining was more intense in cartilage areas with lower aggrecan content. A large proportion of hyaluronan resists GuCl extraction, even from 20-m-thick tissue sections.  相似文献   

6.
7.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

8.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (M(r)s) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same M(r) (20 kDa), whereas DS chains from scoliotic cartilage were of greater M(r) (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

9.
Aggrecan is a key component of cartilage and is responsible for the integrity and function of the tissue. In this study, the content of aggrecan and its structural modifications in adjacent to cancer apparently normal cartilages (AANCs) from various stages of laryngeal squamous cell carcinoma (LSCC) were investigated. Our data demonstrated a stage-related loss of aggregable aggrecan in AANCs, compared to the healthy laryngeal cartilage (HLC), which was excessive in advanced stages of disease. On aggregable aggrecan level, AANCs were characterized by significant compositional and structural modifications, the extent of which was closely related with the stage of LSCC. Four concrete subpopulations of aggregable molecules with particular physicochemical characteristics were identified with a strong tendency to prevail subpopulations of molecules of lower hydrodynamic sizes with increasing LSCC stage. These findings demonstrated that the cleavage of aggregable aggrecan occurred in concrete peptide bonds within the CS-1 and CS-2 attachment domains. These significant alterations were closely associated with the process of cartilage destruction, indicating the crucial role of aggrecan during LSCC.  相似文献   

10.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

11.
Analytical electrophoresis on polyacrylamide-agarose gels of aggregating proteoglycan monomers from baboon articular cartilage produces two distinct bands, corresponding to two different aggregating monomer populations. A preparative electrophoresis procedure is described for isolating the two monomers. Proteoglycans were extracted from young baboon articular cartilage in 4 M guanidinium chloride containing proteolysis inhibitors and aggregated after hyaluronic acid addition. The aggregates were separated from non-aggregated proteoglycans by isopycnic centrifugation, followed by gel chromatography on Sepharose CL-2B. The monomers of the aggregates were obtained by isopycnic centrifugation under dissociative conditions. Two monomers were separated by preparative electrophoresis on 0.8 % agarose submerged gels. Approximately 60 % of the proteoglycans were recovered from the gel using a freeze-squeeze procedure. Aliquots of the separated monomers gave single bands when submitted to analytical polyacrylamide-agarose gel electrophoresis. Their migration and appearance were similar to that of the two bands present in the non separated preparation of monomers.  相似文献   

12.
The chondrocyte is a specialized cell that synthesizes proteoglycans of a type found only in cartilage and nucleus pulposus. These proteoglycans are distinct in forming multiple aggregates of unique structure in which hyaluronic acid provides a central chain to which many proteoglycan molecules are bound at one end only. Chondrocytes were isolated from adult cartilage and used in suspension culture to test the effect of compounds in the medium on the synthesis of proteoglycans. Hyaluronic acid alone, among a number of compounds extracted from or analogous to those in cartilage, reduced the incorporation of [35S] sulphate into macromolecular material.Oligosaccharides of hyaluronic acid of the size of decasaccharides and above also had this effect but hyaluronic acid already bound to proteoglycan did not. The proportion of total labelled material associated with the cells increased at the expense of that in the medium. Treatment of the cells with trypsin abolished the effect of hyaluronic acid but treatment with chondroitinase did not. It is suggested that hyaluronic acid interacts with proteoglycans at the cell surface by a specific mechanism similar to that involved in proteoglycan aggregation, as a result of which the secretion and synthesis of proteoglycans is reduced.  相似文献   

13.
Proteoglycan aggregates were isolated from bovine aorta by extraction with 0.5 M guanidine hydrochloride in the presence of proteinase inhibitors and purified by isopycnic CsCl centrifugation. The bottom two-fifths (A1) of the gradient contained 30% of proteoglycans in the aggregated form. The aggregate had 14.8% protein and 20.4% hexuronic acid with hyaluronic acid, dermatan sulfate and chondroitin sulfates in a proportion of 18:18:69. A link protein-containing fraction was isolated from the bottom two-fifths by dissociative CsCl isopycnic centrifugation. The link protein that floated to the top one-fifth of the gradient was purified by chromatography on Sephadex G-200 in the presence of 4 M guanidine hydrochloride. It moved as a single band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 49 000. The amino acid composition of link protein resembled that of link protein from cartilage, but was strikingly different from that of the protein core of the proteoglycan monomer. The neutral sugar content of link protein was 3.5% of dry weight. Galactose, mannose and fucose constituted 21, 62 and 16%, respectively of the total neutral sugars. In aggregation studies the link protein was found to interact with both proteoglycan monomer and hyaluronic acid. Oligosaccharides derived from hyaluronic acid decreased the viscosity of link protein-free aggregates of proteoglycan and hyaluronic acid but not of link-stabilized aggregates, demonstrating that the link protein increases the stability of proteoglycan aggregates.  相似文献   

14.
Sulfated proteoglycans of the dorsal skin of 8.5-day-old chick embryos have been characterized in terms of their extractability from the tissue, solubility, and sedimentation and chromatographic behavior. The proteoglycans described in this communication are those that remain soluble after dialysis against 0.5 m NaCl. Two chondroitin sulfate proteoglycans (PGCS-A and PGCS-C) and a heparan sulfate proteoglycan (PGHS) have been identified. PGCS-A is the only proteoglycan found in the medium in which the skins were cultured. Under associative conditions (0.4 M guanidine-HCl) PGCS-A and PGHS are extracted. The dissociative solvents (4 M guanidine-HCl) extract more PGCS-A and PGCS-C. PGCS-C has been shown to interact with hyaluronic acid to form aggregates. These proteoglycans have densities ranging from 1.49 to at least 1.59 g/ml. In contrast cartilage proteoglycans that can aggregate with hyaluronic acid have a density of at least 1.59 g/ml. It was not possible to determine if the PGCS-C aggregates exist in vivo.  相似文献   

15.
Aggrecan, a large chondroitin sulfate (CS) and keratan sulfate (KS) proteoglycan, has not previously been expressed as a full-length recombinant molecule. To facilitate structure/function analysis, we have characterized recombinant bovine aggrecan (rbAgg) and link protein expressed in COS-7 cells. We demonstrate that C-terminally truncated rbAgg was not secreted. Gel filtration chromatography of rbAgg and isolated glycosaminoglycan (GAG) chains, and their susceptibility to chondroitinase ABC digestion indicate that the GAG chains are predominantly CS, which likely occupy fewer serine residues than native aggrecan. To confirm functionality, we determined that rbAgg bound hyaluronan and recombinant link protein to form proteoglycan aggregates. In addition, cleavage of rbAgg by ADAMTS-4 revealed that the p68 form of ADAMTS-4 preferentially cleaves within the CS-2 domain, whereas the p40 form only effectively cleaves within the interglobular domain (IGD). MMP-13 cleaved rbAgg within the IGD, but cleaved more rapidly at a site within the CS domains, suggesting a role in C-terminal processing of aggrecan. Our results demonstrate that recombinant aggrecan can be used for in vitro analyses of matrix protease-dependent degradation of aggrecan in the IGD and CS domains, and both recombinant aggrecan and link protein can be used to study the assembly of proteoglycan aggregates with hyaluronan.  相似文献   

16.
An apparatus, AutoGlycoCutter (AGC), was developed as a tool for rapid release of O-linked-type glycans under alkaline conditions. This system allowed rapid release of oligosaccharides at the glycosaminoglycan-protein linkage region in proteoglycans (PGs). After digestion of PGs with chondroitinase ABC, the oligosaccharides at the linkage region were successfully released from the protein core by AGC within 3 min. The reducing ends of the released oligosaccharides were labeled with 2-aminobenzoic acid and analyzed by a combination of capillary electrophoresis (CE) and matrix-assisted laser desorption time-of-flight mass spectrometry. In addition, the unsaturated disaccharides produced by chondroitinase ABC derived from the outer parts of the glycans were labeled with 2-aminoacridone and analyzed by CE to determine the disaccharide compositions. We evaluated AGC as a method for structural analysis of glycosaminoglycans in some chondroitin-sulfate-type PGs (urinary trypsin inhibitor, bovine nasal cartilage PG, bovine aggrecan, bovine decorin, and bovine biglycan). Recoveries of the released oligosaccharides were 57-73% for all PGs tested in the present study. In particular, we emphasize that the use of AGC achieved ca. 1000-fold rapid release of O-glycans compared with the conventional method.  相似文献   

17.
Hyaluronic acid in cartilage and proteoglycan aggregation   总被引:30,自引:23,他引:7       下载免费PDF全文
1. Dissociation of purified proteoglycan aggregates was shown to release an interacting component of buoyant density higher than that of the glycoprotein-link fraction of Hascall & Sajdera (1969). 2. This component, which produced an increase in hydrodynamic size of proteoglycans on gel chromatography, was isolated by ECTEOLA-cellulose ion-exchange chromatography and identified as hyaluronic acid. 3. The effect of pH of extraction showed that the proportion of proteoglycan aggregates isolated from cartilage was greatest at pH4.5. 4. The proportion of proteoglycans able to interact with hyaluronic acid decreased when extracted above or below pH4.5, whereas the amount of hyaluronic acid extracted appeared constant from pH3.0 to 8.5. 5. Sequential extraction of cartilage with 0.15m-NaCl at neutral pH followed by 4m-guanidinium chloride at pH4.5 was shown to yield predominantly non-aggregated and aggregated proteoglycans respectively. 6. Most of the hyaluronic acid in cartilage, representing about 0.7% of the total uronic acid, was associated with proteoglycan aggregates. 7. The non-aggregated proteoglycans were unable to interact with hyaluronic acid and were of smaller size, lower protein content and lower keratan sulphate content than the disaggregated proteoglycans. Together with differences in amino acid composition this suggested that each type of proteoglycan contained different protein cores.  相似文献   

18.
The relationship between cartilage thickness and proteoglycan extractability was examined. Bovine nasal cartilage slices (20, 100, and 500 micron thicknesses) were extracted with low-ionic-strength buffer and 4 M guanidine hydrochloride. The extractability of proteoglycans with both solutions depended on slice thickness. Thinner slices yielded greater amounts of proteoglycans. Sixty-three percent of the total cartilage uronic acid was extracted from 20-micron cartilage slices with low-ionic-strength buffer while only 7% was extracted for 500-micron slices. Each fivefold increase in cartilage surface area led to a threefold increase in uronic acid extraction with low-ionic-strength buffer. Extraction of proteoglycan aggregates was directly proportional to the cartilage surface area whereas extraction of non-aggregated proteoglycans, per surface area, increased with increasing cartilage thickness. These data are consistent with the hypothesis that proteoglycan aggregates are extracted mainly from the cartilage surface while non-aggregated proteoglycans diffuse from deep within the cartilage. Extraction with low-ionic-strength buffer occurred in two phases. There was an initial rapid loss of proteoglycans in which 1/3 to 1/2 of all proteoglycans eluting over 6 days were extracted during the first 30 min. Subsequent extraction was much slower with decreasing amounts extracted on each consecutive day. The initial rapid loss of proteoglycans was probably due to the steep osmotic-pressure gradient existing when the cartilage was placed in the low-ionic-strength buffer.  相似文献   

19.
Proteoglycans were extracted, in a yield of about 90%, from costal cartilage of young, growing guinea-pigs. Three solvents were used in sequence: 0.4 M guanidine - HCl, pH 5.8, 4 M guanidine - HCl, pH 5.8, and 4 M guanidine - HCl/0.1 M EDTA, pH 5.8. The proteoglycans were purified and fractionated by cesium chloride density gradient ultracentrifugation under associative and dissociative conditions. Gel chromatography on Sepharose 2 B of proteoglycan fractions from associative centrifugations showed the presence of both aggregated and monomer proteoglycans. The ratio of aggregates to monomers was higher in the second extract than in the other two extracts. Dissociative gradient centrifugation gave a similar distribution for proteoglycans from all three extracts. Thus, with decreasing buoyant density there were decreasing ratios of polysaccharide to protein, and of chondroitin sulfate to keratan sulfate. In addition, there was with decreasing density an increasing ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. Amino acid analyses of dissociative fractions were inaccordance with previously published results. On comparing proteoglycan monomers of the three extracts, significant differences were found. Proteoglycans, extracted at low ionic strength, contained lower proportions of protein, keratan sulfate, chondroitin 6-sulfate and basic amino acids than those of the second extract. The proteoglycans of the third extract also differed from those of the other extracts. The results indicate that the proteoglycans of guinea-pig costal cartilage exist as a very polydisperse and heterogenous population of molecules, exhibiting variations in aggregation capacity, molecular size, composition of protein core, degree of substitution of the protein core, as well as variability in the type of polysaccharides substituted.  相似文献   

20.
Low molecular mass proteoglycans (PG) were isolated from human articular cartilage and from pig laryngeal cartilage, which contained protein cores of similar size (Mr 40-44 kDa). However, the PG from human articular cartilage contained dermatan sulphate (DS) chains (50% chondroitinase AC resistant), whereas chains from pig laryngeal PG were longer and contained only chondroitin sulphate (CS). Disaccharide analysis after chondroitinase ABC digestion showed that the human DS-PG contained more 6-sulphated residues (34%) than the pig CS-PG (6%) and both contained fewer 6-sulphated residues than the corresponding high Mr aggregating CS-PGs from these tissues (86% and 20% from human and pig respectively). Cross-reaction of both proteoglycans with antibodies to bovine bone and skin DS-PG-II and human fibroblasts DS-PG suggested that the isolated proteoglycans were the humans DS-PG-II and pigs CS-PG-II homologues of the cloned and sequenced bovine proteoglycan. Polyclonal antibodies raised against the pig CS-PG-II were shown to cross-react with human DS-PG-II. SDS/polyacrylamide-gel analysis and immunoblotting of pig and human cartilage extracts showed that some free core protein was present in the tissues in addition to the intact proteoglycan. The antibodies were used in a competitive radioimmunoassay to determine the content of this low Mr proteoglycan in human cartilage extracts. Analysis of samples from 5-80 year-old humans showed highest content (approximately 4 mg/g wet wt.) in those from 15-25 year-olds and lower content (approximately 1 mg/g wet wt.) in older tissue (greater than 55 years). These changes in content may be related to the deposition and maintenance of the collagen fibre network with which this class of small proteoglycan has been shown to interact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号