首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT The coccidians Frenkelia microti and F. glareoli (Apicomplexa: Sarcocystidae) form tissue cysts in the brain of small rodents (intermediate hosts) while oocysts are formed in the intestine of final hosts, buzzards of the genus Buteo. The inclusion of the small subunit ribosomal RNA gene sequences (SSU rRNA) of both Frenkelia species into the SSU rRNA trees of other, tissue cyst-forming coccidia strongly supports paraphyly of the genus Sarcocystis. Frenkelia spp. exhibit close relatedness to Sarcocystis falcatula Stiles 1893, a bird-opossum parasite, recognized under its junior synonym S. neurona Dubey et al. 1991, as the causative agent of equine protozoan myeloencephalitis on the American continent. As the definition of the genus Frenkelia is based on a plesiomorphic character (affinity to the neural tissue) of supposedly low phylogenetic value, the synonymization of the genus Frenkelia with Sarcocystis is proposed. This renders the genus Sarcocystis monophyletic.  相似文献   

2.
Sequences of the small subunit rRNA genes were obtained for two coccidians, Sarcocystis dispersa and an unnamed Sarcocystis sp. which parasitise the European barn owl and an African viperid snake as their final host, respectively, and share mouse as their intermediate host. Phylogenetic analysis of the sequence data showed that Sarcocystis sp. from the viperid snake is most closely related to another Sarcocystis sp. isolated from an American crotalid snake, while S. dispersa grouped with other bird-transmitted species. The available dataset failed to resolve the evolutionary relationships among four major branches into which all Sarcocystidae and Isospora spp. were split. However, within these branches, the phylogenetic relationships of the majority of analysed members of the genus Sarcocystis reflected coevolution with their final, rather than intermediate hosts.  相似文献   

3.
4.
Jirků M  Modrý D  Slapeta JR  Koudela B  Lukes J 《Protist》2002,153(4):379-390
The phylogenetic relationships of Goussia janae and Choleoeimeria sp. were analyzed using the small subunit ribosomal RNA gene (SSU rDNA). This is a first attempt to study the molecular phylogeny of coccidian genera parasitizing strictly poikilotherm hosts. The biliary Eimeria-like coccidia of reptiles classified into the genus Choleoeimeria form a sister clade to the family Eimeriidae, which confirms the separate generic status of the genus Choleoeimeria. The position of Goussia is less robustly resolved, since it forms a trichotomy with the Eimeriidae and Sarcocystidae, or alternatively constitutes the earliest branch of the coccidian lineage. Morphological similarities, namely the extracytoplasmic location of the endogenous stages, and the presence of sutures in the sporocyst wall are discussed in the context of the traditional classification of eimeriids. In contrast to the morphology-based systematics, the monophyly of Goussia and Choleoeimeria is not supported by the SSU rDNA data.  相似文献   

5.
Although their ssrRNA gene sequences are closely related, the lizard sarcosporidia (Apicomplexa, Sarcocystidae) Sarcocystis lacertae and Sarcocystis gallotiae posses heteroxenous and dihomoxenous life cycles, respectively. When aligned with available sarcosporidian ssrRNA genes, both species constitute a monophyletic clade that is only distantly related with sarcosporidia that have a viperid snake as their definitive host (Sarcocystis sp., Sarcocystis atheridis). To test the phyletic status of the dihomoxenous life style, Sarcocystis rodentifelis and Sarcocystis muris, two dihomoxenous parasites of mammals were included into this study. All studied species group together with former Frenkelia spp., Sarcocystis neurona and related marsupial and bird sarcosporidia in a monophyletic clade. However, the available dataset supports independent appearance of the dihomoxenous life cycle at least twice during the evolution of the Sarcocystidae.  相似文献   

6.
The phylogenetic relationships and taxonomic affinities of coccidia with isosporan-type oocysts have been unclear as overlapping characters, recently discovered life cycle features, and even recently discovered taxa. continue to be incorporated into biological classifications of the group. We determined the full or partial 18S ribosomal RNA gene sequences of three mammalian Isospora spp., Isospora felis, Isospora ohioensis and Isospora suis , and a Sarcocystis sp. of a rattlesnake, and used these sequences for a phylogenetic analysis of the genus Isospora and the cyst-forming coccidia. Various alveolate 18S rDNA sequences were aligned and analyzed using maximum parsimony to obtain a phylogenetic hypothesis for the group. The three Isospora spp. were found to be most closely related to Toxoplasma gondii and Neospora caninum. This clade in turn formed the sister group to the Sarcocystis spp. included in the analysis. The results confirm that the genus Isospora does not belong to the family Eimeriidae, but should be classified together with the cyst-forming coccidia in the family Sarcocystidae. Furthermore, there appear to be two lineages within the Sarcocystidae. One lineage comprises Isospora and the Toxoplasma/Neospora clade which share the characters of having a proliferative phase of development preceding gamogony in the definitive host and an exogenous phase of sporogony. The other lineage comprises the Sarcocystis spp. which have no proliferative phase in the definitive host and an endogenous phase of sporogony.  相似文献   

7.
The different genera currently classified into the family Sarcocystidae include parasites which are of significant medical, veterinary and economic importance. The genus Sarcocystis is the largest within the family Sarcocystidae and consists of species which infect a broad range of animals including mammals, birds and reptiles. Frenkelia, another genus within this family, consists of parasites that use rodents as intermediate hosts and birds of prey as definitive hosts. Both genera follow an almost identical pattern of life cycle, and their life cycle stages are morphologically very similar. However, the relationship between the two genera remains unresolved because previous analyses of phenotypic characters and of small subunit ribosomal ribonucleic acid gene sequences have questioned the validity of the genus Frenkelia or the monophyly of the genus Sarcocystis if Frenkelia was recognised as a valid genus. We therefore subjected the large subunit ribosomal ribonucleic acid gene sequences of representative taxa in these genera to phylogenetic analyses to ascertain a definitive relationship between the two genera. The full length large subunit ribosomal ribonucleic acid gene sequences obtained were aligned using Clustal W and Dedicated Comparative Sequence Editor secondary structure alignments. The Dedicated Comparative Sequence Editor alignment was then split into two data sets, one including helical regions, and one including non-helical regions, in order to determine the more informative sites. Subsequently, all four alignment data sets were subjected to different tree-building algorithms. All of the analyses produced trees supporting the paraphyly of the genus Sarcocystis if Frenkelia was recognised as a valid genus and, thus, call for a revision of the current definition of these genera. However, an alternative, more parsimonious and more appropriate solution to the Sarcocystis/Frenkelia controversy is to synonymise the genus Frenkelia with the genus Sarcocystis.  相似文献   

8.
Phylogenetic relationships among nematodes of the strongylid superfamily Metastrongyloidea were analyzed using partial sequences from the large-subunit ribosomal RNA (LSU rRNA) and small-subunit ribosomal RNA (SSU rRNA) genes. Regions of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction, directly sequenced, aligned, and phylogenies inferred using maximum parsimony. Phylogenetic hypotheses inferred from the SSU rRNA gene supported the monophyly of representative taxa from each of the 7 currently accepted metastrongyloid families. Metastrongyloid taxa formed the sister group to representative trichostrongyloid sequences based on SSU data. Sequences from either the SSU or LSU RNA regions alone provided poor resolution for relationships within the Metastrongyloidea. However, a combined analysis using sequences from all rDNA regions yielded 3 equally parsimonious trees that represented the abursate Filaroididae as polyphyletic, Parafilaroides decorus as the sister species to the monophyletic Pseudaliidae, and a sister group relationship between Oslerus osleri and Metastrongylus salmi. Relationships among 3 members of the Crenosomatidae, and 1 representative of the Skrjabingylidae (Skrjabingylus chitwoodorum) were not resolved by these combined data. However, members of both these groups were consistently resolved as the sister group to the other metastrongyloid families. These relationships are inconsistent with traditional classifications of the Metastrongyloidea and existing hypotheses for their evolution.  相似文献   

9.
The phylogenetic relationship of the coelomycete genus Infundibulomyces with cupulate conidiomata was assessed by ribosomal DNA sequences of partial small subunit (SSU) and partial large subunit (LSU) regions using maximum parsimony and Bayesian analysis. The genus has no known teleomorph. A new species, Infundibulomyces oblongisporus, is described from collections on a senescent angiosperm leaf from Thailand based on morphological and phylogenetic evidence. Both Infundibulomyces species form a monophyletic group in the Chaetosphaeriaceae (Chaetosphaeriales, Sordariomycetidae) with Dictyochaeta simplex as a sister clade. Chaetosphaeriaceae with a coelomycete anamorph has not been reported previously.  相似文献   

10.
Skovgaard A  Massana R  Balagué V  Saiz E 《Protist》2005,156(4):413-423
Sequences were determined for the nuclear-encoded small subunit (SSU) rRNA and 5.8S rRNA genes as well as the internal transcribed spacers ITS1 and ITS2 of the parasitic dinoflagellate genus Syndinium from two different marine copepod hosts. Syndinium developed a multicellular plasmodium inside its host and at maturity free-swimming zoospores were released. Syndinium plasmodia in the copepod Paracalanus parvus produced zoospores of three different morphological types. However, full SSU rDNA sequences for the three morphotypes were 100% identical and also their ITS1-ITS2 sequences were identical except for four base pairs. It was concluded that the three morphotypes belong to a single species that was identified as Syndinium turbo, the type species of the dinoflagellate subdivision Syndinea. The SSU rDNA sequence of another Syndinium species infecting Corycaeus sp. was similar to Syndinium turbo except for three base pairs and the ITS1-ITS2 sequences of the two species differed at 34-35 positions. Phylogenetic analyses placed Syndinium as a sister taxon to the blue crab parasite Hematodinium sp. and both parasites were affiliated with the so-called marine alveolate Group II. This corroborates the hypothesis that marine alveolate Group II is Syndinea.  相似文献   

11.
18S rRNA genes (SSU rDNA) of five newly sequenced species were used as molecular markers to infer phylogenetic relationships within the euglenoids. Two members of the order Euglenales ( Lepocinclis ovata Playfair , Phacus similis Christen), two of the order Eutreptiales ( Distigma proteus Ehrenberg, , D. curvata Pringsheim) and Gyropaigne lefévrei Bourelly et Georges of the order Rhabdomonadales were used in parsimony, maximum likelihood, and distance analyses. All trees derived from SSU rRNA data strongly supported the monophyletic origin of the Euglenozoa, with kinetoplastids as sister clade to the euglenoids and Petalomonas cantuscygni Cann et Pennick diverging at the base of the monophyletic euglenoid lineage. The data also supported the theory that phagotrophic euglenoids arose prior to osmotrophs and phototrophs. A lineage of Peranema trichophorum Ehrenberg and all sequenced Euglenales formed a sister clade to the osmotrophs. This suggests that the evolution of phototrophy within the euglenoids radiated from a single event.  相似文献   

12.
Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates.  相似文献   

13.
Nuclear-encoded small subunit (SSU) rDNA, 1506 group I introns, and chloroplast rbcL genes were sequenced from 97 strains representing the largest desmid genus Cosmarium (45 spp.), its putative relatives Actinotaenium (5 spp.), Xanthidium (4 spp.), Euastrum (9 spp.), Staurodesmus (13 spp.), and other Desmidiaceae (Zygnematophyceae, Streptophyta) and used to assess phylogenetic relationships in the family. Analyses of single genes and of a concatenated data set (3260 nt) established 10 well-supported clades in the family with Cosmarium species distributed in six clades and one nonsupported assemblage. Most of the clades contained representatives of at least two genera highlighting the polyphyletic nature of the genera Cosmarium, Euastrum, Staurodesmus, and Actinotaenium. To enhance resolution between clades, we extended the data set by sequencing the slowly evolving chloroplast-encoded large subunit (LSU) rRNA gene from 40 taxa. Phylogenetic analyses of a concatenated data set (5509 nt) suggested a sister relationship between two clades that consisted mainly of Cosmarium species and included C. undulatum, the type species of the genus. We describe molecular signatures in the SSU rRNA for two clades and conclude that more studies involving new isolates, additional molecular markers, and reanalyses of morphological traits are necessary before the taxonomic revision of the genus Cosmarium can be attempted.  相似文献   

14.
Morphological and life cycle features of the tissue cyst-forming coccidia have been difficult to interpret in devising taxonomic classifications for the various genera. In this study, we amplified the full small subunit rRNA gene sequence of Isospora robini McQuistion and Holmes, 1988, and the partial sequence of Isospora gryphoni Olsen, Gissing, Barta, and Middleton, 1998 by PCR. Both of these species vary from Isospora species of mammals in having Stieda bodies on the sporocysts. The sequences were cloned and sequenced and were incorporated into an alignment with other Isospora species lacking Stieda bodies as well as with other coccidia. Maximum parsimony analysis of these sequences produced a single most parsimonious tree that placed I. robini and I. gryphoni in a clade containing various other eimeriid species. The Isospora species lacking Stieda bodies were in the sarcocystid clade. Similar results were found by maximum likelihood analysis. These findings indicate that the genus Isospora as defined by several authors is polyphyletic. Taxonomic changes to the genus Isospora would have to incorporate the 2 major clades found by molecular phylogenetic analysis. Isospora species with Stieda bodies should be classified in the family Eimeriidae, whereas those without Stieda bodies should remain in the family Sarcocystidae.  相似文献   

15.
There has been much argument about the phylogenetic relationships of the four suborders of lice (Insecta: Phthiraptera). Lyal's study of the morphology of lice indicated that chewing/biting lice (Mallophaga) are paraphyletic with respect to sucking lice (Anoplura). To test this hypothesis we inferred the phylogeny of 33 species of lice from small subunit (SSU) rRNA sequences (18S rRNA). Liposcelis sp. from the Liposcelididae (Psocoptera) was used for outgroup reference. Phylogenetic relationships among the four suborders of lice inferred from these sequences were the same as those inferred from morphology. The Amblycera is apparently the sister-group to all other lice whereas the Rhynchophthirina is apparently sister to the Anoplura; these two suborders are sister to the Ischnocera, i.e. (Amblycera (Ischnocera (Anoplura, Rhynchophthirina))). Thus, the Mallophaga (Amblycera, Ischnocera, Rhynchophthirina) is apparently paraphyletic with respect to the Anoplura. Our analyses also provide evidence that: (i) each of the three suborders of lice that are well represented in our study (the Amblycera, Ischnocera, and Anoplura) are monophyletic; (ii) the Boopiidae is monophyletic; (iii) the genera Heterodoxus and Latumcephalum (Boopiidae) are more closely related to one another than either is to the genus Boopia (also Boopiidae); (iv) the Ricinidae and Laemobothridae may be sister-taxa; (v) the Philopteridae may be paraphyletic with respect to the Trichodectidae; (vi) the genera Pediculus and Pthirus are more closely related to each other than either is to the genus Pedicinus ; and (vii) in contrast to published data for mitochondrial genes, the rates of nucleotide substitution in the SSU rRNA of lice are not higher than those of other insects, nor do substitution rates in the suborders differ substantially from one another.  相似文献   

16.
Kawachi  M.  Inouye  I.  Honda  D.  O''kelly  C.J.  Bailey  J.C.  Bidigare  R.R.  & Andersen  R.A. 《Journal of phycology》2000,36(S3):35-35
The streptophytes comprise the Charophyceae sensu Mattox and Stewart (a morphologically diverse group of fresh-water green algae) and the embryophytes (land plants). Several charophycean groups are currently recognized. These include the Charales, Coleochaetales, Chlorokybales, Klebsormidiales and Zygnemophyceae (Desmidiales and Zygnematales). Recently, SSU rRNA gene sequence data allied Mesostigma viride (Prasinophyceae) with the Streptophyta. Complete chloroplast sequence data, however, placed Mesostigma sister to all green algae, not with the streptophytes. Several morphological, ultrastructural and biochemical features unite these lineages into a monophyletic group including embryophytes, but evolutionary relationships among the basal streptophytes remain ambiguous. To date, numerous studies using SSU rRNA gene sequences have yielded differing phylogenies with varying degrees of support dependent upon taxon sampling and choice of phylogenetic method. Like SSU data, chloroplast DNA sequence data have been used to examine relationships within the Charales, Coleochaetales, Zygnemophyceae and embryophytes. Representatives of all basal streptophyte lineages have not been examined using chloroplast data in a single analysis. Phylogenetic analyses were performed using DNA sequences of rbc L (the genes encoding the large subunit of rubisco) and atp B (the beta-subunit of ATPase) to examine relationships of basal streptophyte lineages. Preliminary analyses placed the branch leading to Mesostigma as the basal lineage in the Streptophyta with Chlorokybus , the sole representative of the Chlorokybales, branching next. Klebsormidiales and the enigmatic genus Entransia were sister taxa. Sister to these, the Charales, Coleochaetales, embryophytes and Zygnemophyceae formed a monophyletic group with Charales and Coleochaetales sister to each other and this clade sister to the embryophytes.  相似文献   

17.
To further investigate the phylogeny of protozoa from the order Kinetoplastida we have sequenced the small subunit (SSU) and a portion of the large subunit (LSU) nuclear rRNA genes. The SSU and LSU sequences were determined from a lizard trypanosome, Trypanosoma scelopori and a bodonid, Rhynchobodo sp., and the LSU sequences were determined from an insect trypanosomatid, Crithidia oncopelti, and a bodonid, Dimastigella trypaniformis. Contrary to previous results, in which trypanosomes were found to be paraphyletic, with Trypanosoma brucei representing the earliest-diverging lineage, we have now found evidence for the monophyly of trypanosomes. Addition of new taxa which subdivide long branches (such as that of T. brucei) have helped to identify homoplasies responsible for the paraphyletic trees in previous studies. Although the monophyly of the trypanosome clade is supported in the bootstrap analyses for maximum likelihood at 97% and maximum parsimony at 92%, there is only a small difference in ln-likelihood value or tree length between the most optimal monophyletic tree and the best suboptimal paraphyletic tree. Within the trypanosomatid subtree, the clade of trypanosomes is a sister group to the monophyletic clade of the nontrypanosome genera. Different groups of trypanosomes group on the tree according to their mode of transmission. This suggests that the adaptation to invertebrate vectors plays a more important role in the trypanosome evolution than the adaptation to vertebrate hosts. Received: 5 July 1996 / Accepted: 26 September 1996  相似文献   

18.
The ITS1 sequences for C. suis, C. belli, C. rivolta, C. felis, and C. ohioensis-like oocysts were determined and a diagnostic PCR-RFLP assay specific for Cystosisopora species was developed. Phylogenetic analysis of ITS1 sequences of Cystosisopora species along with ITS1 sequences for Toxoplasma, Neospora, Sarcocystis and Eimeria spp. using distance, minimum evolution and parsimony-based methods confirmed previous studies, which suggested that the genus Cystoisospora does not belong to the family Eimeriidae, but should be classified together with the cyst-forming coccidia in the family Sarcocystidae.  相似文献   

19.
The streptophytes comprise the Charophyceae sensu Mattox and Stewart (a morphologically diverse group of fresh‐water green algae) and the embryophytes (land plants). Several charophycean groups are currently recognized. These include the Charales, Coleochaetales, Chlorokybales, Klebsormidiales and Zygnemophyceae (Desmidiales and Zygnematales). Recently, SSU rRNA gene sequence data allied Mesostigma viride (Prasinophyceae) with the Streptophyta. Complete chloroplast sequence data, however, placed Mesostigma sister to all green algae, not with the streptophytes. Several morphological, ultrastructural and biochemical features unite these lineages into a monophyletic group including embryophytes, but evolutionary relationships among the basal streptophytes remain ambiguous. To date, numerous studies using SSU rRNA gene sequences have yielded differing phylogenies with varying degrees of support dependent upon taxon sampling and choice of phylogenetic method. Like SSU data, chloroplast DNA sequence data have been used to examine relationships within the Charales, Coleochaetales, Zygnemophyceae and embryophytes. Representatives of all basal streptophyte lineages have not been examined using chloroplast data in a single analysis. Phylogenetic analyses were performed using DNA sequences of rbcL (the genes encoding the large subunit of rubisco) and atpB (the beta‐subunit of ATPase) to examine relationships of basal streptophyte lineages. Preliminary analyses placed the branch leading to Mesostigma as the basal lineage in the Streptophyta with Chlorokybus, the sole representative of the Chlorokybales, branching next. Klebsormidiales and the enigmatic genus Entransia were sister taxa. Sister to these, the Charales, Coleochaetales, embryophytes and Zygnemophyceae formed a monophyletic group with Charales and Coleochaetales sister to each other and this clade sister to the embryophytes.  相似文献   

20.
ABSTRACT. Peritrich ciliates have been traditionally subdivided into two orders, Sessilida and Mobilida within the subclass Peritrichia. However, all the existing small subunit (SSU) rRNA phylogenetic trees showed that the sessilids and mobilids did not branch together. To shed some light on this disagreement, we tested whether or not the classic Peritrichia is a monophyletic group by assessing the reliability of the SSU rRNA phylogeny in terms of congruency with α‐tubulin phylogeny. For this purpose, we obtained 10 partial α‐tubulin sequences from peritrichs and built phylogenetic trees based on α‐tubulin nucleotide and amino acid data. A phylogenetic tree from the α‐tubulin and SSU rRNA genes in combination was also constructed and compared with that from the SSU rRNA gene using a similar species sampling. Our results show that the mobilids and sessilids are consistently separated in all trees, which reinforces the idea that the peritrichs do not constitute a monophyletic group. However, in all α‐tubulin gene trees, the urceolariids and trichodiniids do not group together, suggested mobilids may not be a monophyletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号