首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A generalized approach to obtain relatively pure fractions of plasma membrane from smooth muscle tissues for studying calcium transport is described. The use of various markers for cellular membranes to establish the purity of various fractions is critically considered. Plasma membranes from rat myometrium have been isolated in a purity estimated to be 95-99%. Plasma membrane purifications to 70-80% have been achieved from rat mesenteric arteries and veins, canine tracheal smooth muscle, rabbit intestinal muscle, rat vas deferens, rat fundus, and dog gastric corpus. The ATP-dependent transport of Ca is correlated with the distribution of plasma membrane markers. Ca gradient of greater than 1000-fold have been achieved. ATP-dependent active Ca transport by plasma membranes could sometimes be stimulated by oxalate or phosphate. Anion activation of Ca active transport is not a marker for endoplasmic reticulum. In some smooth muscles (e.g., rat vas deferens) ATP-dependent Ca uptake did not correlate exclusively with the distribution of plasma membrane markers. Instead, the correlation seemed to be with NADPH-cytochrome reductase EC 1.6.2.5 activity (putative endoplasmic reticulum marker) as well as with plasma membrane markers. In all smooth muscles, active Ca transport appears to be a property of the plasma membrane; in some it may also be a property of the endoplasmic reticulum. Mitochondria actively transport Ca, but in most systems studied to date, the Km for Ca2+ for this transport is higher than that for plasma membrane. Thus the plasma membrane may be the major physiological mechanism of active transport for Ca out of cytoplasm of smooth muscle cells. In two plasma membrane fractions (from rat myometrium and mesenteric arteries) it has been possible to demonstrate the existence of an Na-Ca exchange system. Its contribution to lowering cytoplasmic Ca is unknown.  相似文献   

2.
A technique employing sucrose-density centrifugation for the enrichment of rat liver microsomes and rat liver plasma membranes in separate subcellular fractions is described. The fractions are enriched in glucose 6-phosphatase and 5'-nucleotidase, respectively, and are free of cytochrome oxidase activity. Vanadate-sensitive Ca2+ transport activity (half-maximal inhibition at approximately 10 microM vanadate, corresponding to approximately 12 nmol/mg of protein) was detected in only that fraction enriched in microsomal membranes. Inhibition by vanadate of ATP-dependent Ca2+ transport is noncompetitive with respect to added Ca2+ but competitive with respect to added ATP. Because it inhibits ATP-dependent Ca2+ transport in rat liver microsomes but not in rat liver plasma membranes, vanadate becomes a useful tool to distinguish in vitro between these two transport systems.  相似文献   

3.
A method is described for preparation of large amounts of a plasma membrane (PM) enriched fraction from the smooth muscle of dog antrum. It consists of preparing microsomes, treating them with ATP + EGTA + Mg, centrifuging in 30% sucrose and then centrifuging the resulting supernatant in 15% sucrose to yield the plasma membrane enriched fraction P6. The subcellular fractions obtained at various steps during purification were characterized by: 5'-nucleotidase and phosphodiesterase I as plasma membrane markers; cytochrome c oxidase as an inner mitochondrial marker; NADPH-cytochrome c reductase as a putative endoplasmic reticulum marker; electron microscopy; polyacrylamide sodium dodecyl sulfate slab gel electrophoresis. The distribution of ATP-dependent and independent Ca uptake in presence and absence of azide and the effect of 5 mM oxalate or 25 mM phosphate on this uptake was also examined. The fraction P6 consists of mostly smooth surface vesicles 164.3 +/- 7.2 nm in diameter, has an exclusion volume of 9.7 microL/mg for [3H]inulin and 11.1 microL/mg for [3H]sucrose. P6 is maximally enriched in the ATP-dependent azide-insensitive Ca-uptake capacity and as compared with the postnuclear supernatant (S1) it shows a very small percent stimulation by oxalate and phosphate. The ATP-dependent Ca uptake by the P6 fraction occurs optimally at pH 7.0-7.4 and is much larger than the ATP-independent Ca uptake. At pH 7.1, the ATP-dependent Ca uptake occurs with a Km of 0.27 microM and a Hill coefficient greater than 2 for Ca2+. Half maximum binding of Ca2+ occurred at 300 microM Ca2+. Ca ionophores A23187 and ionomycin inhibited the ATP-dependent Ca uptake, and if added after the uptake, these caused a release of the accumulated Ca2+. From these and other data it is concluded that this PM preparation contains a Ca transport system which can lead to formation of greater than 1000-fold Ca2+ concentration gradient across the vesicle membrane in 1 min when extravesicular Ca2+ concentration is 0.3 microM. Thus this preparation is an extremely useful material for studying the mechanism of action of the Ca pump in smooth muscle plasma membrane.  相似文献   

4.
ATP-dependent Ca2+ uptake by brain microsomes was classified into two fractions according to the sensitivity to saponin. Properties of each fraction of Ca2+ uptake were examined and compared with those of inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum. The concentration of saponin for 50% inhibition (IC50) of major saponin-sensitive Ca2+ uptake was 11 micrograms/ml, and this uptake was enhanced by calmodulin. The minor saponin-insensitive Ca2+ uptake fraction (IC50; 90 micrograms/ml) was not affected by calmodulin but was enhanced by oxalate or 0.1 M KCl. The IC 50 of saponin for inside-out membrane vesicles of erythrocyte and cardiac sarcoplasmic reticulum was 11.3 and 114.8 micrograms/ml, respectively. A characteristic ring-like saponin-cholesterol micellar structure was observed electron microscopically in most membrane vesicles of brain microsomes and erythrocyte membrane vesicles but not in the cardiac sarcoplasmic reticulum. These observations indicate that saponin-sensitive and insensitive Ca2+ uptake was derived from plasma membranes and endoplasmic reticulum, respectively. Saponin proved useful for distinguishing the Ca2+ transport activity of plasma membrane from the Ca2+ uptake of other cellular organelles in the membrane preparations.  相似文献   

5.
Target size of the 5'-nucleotidase in six different smooth muscles was determined by radiation inactivation. The enzyme in the soluble fraction of rat myometrium and vas deferens gave a target size of approximately 80,000 daltons. The plasma membrane bound 5'-nucleotidase however, gave target size of 80,000 to 110,000 daltons in rat gastric fundus and vas deferens and dog stomach and ileum, 135,000 daltons in rat mesenteric artery and 210,000 daltons in rat myometrium.  相似文献   

6.
A membrane fraction was isolated from the smooth muscle of the pig stomach by density gradient centrifugation. It was observed that the ATP-dependent Ca uptake in this fraction was diminished if the microsomes were pelleted by differential centrifugation. The decrease of the oxalate-independent Ca uptake was relatively small, but the oxalate-stimulated Ca uptake was reduced dramatically. Evidence is presented which indicates that the selective decrease of the oxalate-stimulated Ca uptake is mainly caused by mechanical damage of the vesicles. Since the oxalate-stimulated Ca uptake can be largely preserved by avoiding pelleting during the membrane fractionation, this observation may be very useful for the further study of Ca transport in subcellular fractions of smooth muscle.  相似文献   

7.
The plasma membrane ATP-dependent Ca2+ pump and the Na+/Ca2+ exchanger (NCX) are the major means of Ca2+ extrusion in smooth muscle. However, little is known regarding distribution and function of the NCX in guinea pig gastric smooth muscle. The expression pattern and distribution of NCX isoforms suggest a role as a regulator of Ca2+ transport in cells. Na+ pump inhibition and the consequent to removal of K+ caused gradual contraction in fundus. In contrast, the response was significantly less in antrum. Western blotting analysis revealed that NCX1 and NCX2 are the predominant NCX isoforms expressed in stomach, the former was expressed strongly in antrum, whereas the latter displayed greater expression in fundus. Isolated plasma membrane fractions derived from gastric fundus smooth muscle were also investigated to clarify the relationship between NCX protein expression and function. Na+-dependent Ca2+ uptake increased directly with Ca2+ concentration. Ca2+ uptake in Na+-loaded vesicles was markedly elevated in comparison with K+-loaded vesicles. Additionally, Ca2+ uptake by the Na+- or K+-loaded vesicles was substantially higher in the presence of A23187 than in its absence. The result can be explained based on the assumption that Na+ gradients facilitate downhill movement of Ca2+. Na+-dependent Ca2+ uptake was abolished by the monovalent cationic ionophore, monensin. NaCl enhanced Ca2+ efflux from vesicles, and this efflux was significantly inhibited by gramicidin. Results documented evidence that NCX2 isoform functionally contributes to Ca2+ extrusion and maintenance of contraction-relaxation cycle in gastric fundus smooth muscle.  相似文献   

8.
The target sizes of the oxalate-independent Ca uptake by the plasma membrane enriched fraction F2, and the oxalate-stimulated Ca uptake by a fraction F3 slightly enriched in the endoplasmic reticulum were determined by radiation inactivation. The oxalate-independent Ca uptake was inactivated with a D37 value of 1.96 +/- 0.30 Mrad but the oxalate-stimulated Ca uptake had a D37 value of 0.45 +/- 0.07 Mrad. Thus, in the smooth muscle the oxalate-stimulated Ca uptake appeared to be due to a structure 3 to 6 times larger than was the oxalate-independent Ca uptake. The subcellular site of the ATP-dependent azide insensitive Ca uptake in the smooth muscle has been disputed in the past. It has been suggested to be plasma membrane (PM) by several workers, and endoplasmic reticulum (ER) by others. Recently, however, there has been substantial evidence to support the hypothesis that one Ca uptake system, unaffected by oxalate, resides in the PM and another, stimulated by oxalate, is located in the ER of the smooth muscle. The evidence has been reviewed recently. Here, we show that the two modes of Ca uptake differ in their target sizes as well. To our knowledge, this is the first report on the use of radiation inactivation to distinguish between the two modes of Ca uptake in any tissue.  相似文献   

9.
A detailed procedure for subcellular fractionation of the smooth muscle from pig coronary arteries based on dissection of the proper tissue, homogenization, differential centrifugation and sucrose density gradient centrifugation is described. A number of marker enzymes and Ca2+ uptake in presence or absence of oxalate, ruthenium red and azide were studied. The ATP-dependent oxalate-independent azide- or ruthenium red-insensitive Ca2+ uptake, and the plasma membrane markers K+-activated ouabain-sensitive p-nitrophenylphosphatase, 5'-nucleotidase and Mg2+-ATPase showed maximum enrichment in the F2 fraction (15-28% sucrose) which was also contaminated with the endoplasmic reticulum marker NADPH: cytochrome c reductase, and to a small extent with the inner mitochondrial marker cytochrome c reductase, and also showed a small degree of oxalate stimulation of the Ca2+ uptake. F3 fraction (28-40% sucrose) was maximally enriched in the ATP- and oxalate-dependent azide-insensitive Ca2+ uptake and the endoplasmic reticulum marker NADPH: cytochrome c reductase but was heavily contaminated with the plasma membrane and the inner mitochondrial markers. The mitochondrial fraction was enriched in cytochrome c oxidase and azide- or ruthenium red-sensitive ATP-dependent Ca2+ uptake but was heavily contaminated with other membranes. Electron microscopy showed that F2 contained predominantly smooth surface vesicles and F3 contained smooth surface vesicles, rough endoplasmic reticulum and mitochondria. The ATP-dependent azide-insensitive oxalate-independent and oxalate-stimulated Ca2+ uptake comigrated with the plasma membrane and the endoplasmic reticulum markers, respectively, and were preferentially inhibited by digitonin and phosphatidylserine, respectively. This study establishes a basis for studies on receptor distribution and further Ca2+ uptake studies to understand the physiology of coronary artery vasodilation.  相似文献   

10.
Microsomes from rat submaxillary glands are able to take up calcium from the suspension media. Calcium uptake is greatly increased by the presence of ATP. This effect of ATP is not detected at 0°C. ADP cannot replace ATP to potentiate calcium uptake. ATP-dependent calcium uptake is not observed in the absence of magnesium. ATP-dependent calcium uptake is enhanced by oxalate and, to a lesser degree, by inorganic phosphate. Total calcium per milligram of microsomal protein observed when tests were performed without oxalate closely parallels the amounts for skeletal and cardiac muscles reported by several authors. Calcium uptake in salivary gland microsomes is slower than in muscle microsomes. Speculations are considered about the role of ATP-dependent calcium uptake. It is suggested that a decrease in intracellular free calcium levels returns these cells to the resting state after secretion.  相似文献   

11.
Among rat peripheral tissues examined, Ins(1,4,5)P(3) receptor binding is highest in the vas deferens, with levels about 25% of those of the cerebellum. We have purified the InsP(3) receptor binding protein from rat vas deferens membranes 600-fold. The purified protein displays a single 260 kDa band on SDS/PAGE, and the native protein has an apparent molecular mass of 1000 kDa, the same as in cerebellum. The inositol phosphate specificity, pH-dependence and influence of various reagents are the same for purified vas deferens and cerebellar receptors. Whereas particulate InsP(3) binding in cerebellum is potently inhibited by Ca(2+), particulate and purified vas deferens receptor binding of InsP(3) is not influenced by Ca(2+). Vas deferens appears to lack calmedin activity, but the InsP(3) receptor is sensitive to Ca(2+) inhibition conferred by brain calmedin. The vas deferens may prove to be a valuable tissue for characterizing functional aspects of InsP(3) receptors.  相似文献   

12.
ATP-dependent Ca2+ transport was studied in rat parotid microsomes; the activity appears to be associated with rough endoplasmic reticulum vesicles, as indicated by marker distribution in subcellular fractions and by electron microscopic observations. Purified rough microsomes exhibit an ATP-dependent Ca2+ accumulation and a Ca2+-dependent ATPase activity; these activities are similarly stimulated by K+ and display an apparent Km for free calcium of 0.6-0.7 microM. A phosphoprotein, with a molecular weight of about 110,000, was detected after short incubation with [gamma 32P] ATP and CaCl2; it is suggested that this compound represents a phosphorylated intermediate form of the Ca2+-ATPase.  相似文献   

13.
ATP-dependent Ca2+ transport was investigated in a rat parotid microsomal-membrane preparation enriched in endoplasmic reticulum. Ca2+ uptake, in KCl medium, was rapid, linear with time up to 20 s, and unaffected by the mitochondrial inhibitors NaN3 and oligomycin. This Ca2+ uptake followed Michaelis-Menten kinetics, and was of high affinity (Km approximately 38 nM) and high capacity (approximately 30 nmol/min per mg of protein). In the presence of oxalate, Ca2+ uptake continued to increase for at least 5 min, reaching an intravesicular accumulation approx. 10 times higher than without oxalate. Ca2+ uptake was dependent on univalent cations in the order K+ = Na+ greater than trimethylammonium+ greater than mannitol and univalent anions in the order Cl- greater than acetate- greater than Br- = gluconate- = NO3- greater than SCN-. Ca2+ uptake was not elevated if membranes were incubated in the presence of a lipophilic anion (NO3-) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Ca2+ transport was altered by changes in the K+-diffusion potential of the membranes. A relatively negative K+-diffusion potential increased the initial rate of Ca2+ accumulation, whereas a relatively positive potential decreased Ca2+ accumulation. In the presence of an outwardly directed K+ gradient, nigericin had no effect on Ca2+ uptake. In aggregate, these studies suggest that the ATP-dependent Ca2+-transport mechanism present in rat parotid microsomal membranes exhibits an electrogenic Ca2+ flux which requires the movement of other ions for charge compensation.  相似文献   

14.
The rate of Mg2+, Ca2+-ATPase reaction and ATP-dependent Ca2+ accumulation in a preparation of plasma membranes from brain synaptosomes increases 60 min following whole-body X-irradiation of rats with a dose of 0.21 C/kg, a calcium sensitivity of both processes being increased. A unidirectional change in their kinetics indicates the early radiosensitivity of Ca2+ transfer systems in the brain synaptosome membranes. There is an increase in the availability of SH-groups of membrane preparation proteins for SH-reagents and in the sensitivity of Mg2+, Ca2+-ATPase reaction and ATP-dependent Ca2+ accumulation to trifluoperazine, a calmodulin inhibitor. Both processes lose their ability to be activated by exogenous calmodulin. It is suggested that at an early stage of radiation affection, a change occurs in the molecular organization of the ATPase-calmodulin membrane complex in plasma membranes of rat brain synaptosomes.  相似文献   

15.
1. ATP-dependent calcium uptake by a rabbit brain vesicular fraction (microsomes) was studied in the presence of phosphate or oxalate. These anions, which are known to form insoluble calcium salts, increased the rate of calcium uptake and the capacity of the vesicles for calcium accumulation. 2. The degree of activation depended on the concentration of phosphate or oxalate. Under optimal conditions, phosphate promoted a 5-fold increase in the amount of calcium stored at steady state. This level was 200-250 nmol Ca-2+/mg protein. 3. Initial rate of calcium uptake followed Michaelis-Menten kinetics with an apparent Km for calcium of 6.7-10-minus 5 M and a V of 44 nmol/min per mg protein. Optimal pH was 7.0. With 2 mM ATP, optimal Mg-2+ concentration was 2 mM. 4. Dintrophenol and NaN3 inhibited calcium uptake in a mitochondria-enriched fraction but not in the microsomal fraction. 5. Calcium uptake activity was compared in the six subfractions prepared from the whole microsomal fraction by means of a sucrose density gradient fractionation. 6. The Mg-2+-dependent ATPase activity of brain microsomes was activated by calcium. Maximal activation was attained with 100 muM CaCl2. Greater calcium concentrations caused a progressive inhibition. 7. The data suggest that the ATP-dependent calcium uptake in brain microsomes, as in muscle microsomes, is brought about by an active transport process, calcium being accumulated as a free ion inside the vesicles.  相似文献   

16.
A K Grover  C Y Kwan 《Life sciences》1983,32(23):2655-2660
The ATP-dependent azide-insensitive Ca-uptake by the postnuclear supernatant from rat myometrium is stimulated more by 5 mM oxalate than by 25 mM phosphate. During subcellular fractionation, however, the percent recovery of the oxalate stimulated Ca-uptake diminishes more rapidly than that of the Ca-uptake without any added oxalate or phosphate. The percent recovery of the phosphate stimulated Ca-uptake also diminishes but not to as low levels as that of the oxalate stimulated Ca-uptake. The net result is higher stimulation of this uptake by 25 mM phosphate than by 5 mM oxalate in the various sucrose density gradient fractions. This discrepancy in percent recoveries presents a major concern about the use of oxalate or phosphate stimulated Ca-uptake as a marker for smooth muscle membranes.  相似文献   

17.
The widely-used food dye Erythrosin B inhibited ATP-dependent Ca2+ accumulation by rat brain microsomes, half-maximal inhibition requiring 1 microM dye. Addition of 0.5-20 microM dye to microsomes preloaded with Ca2+ did not cause any net Ca2+ release. 10 microM dye produced a constant inhibition of Ca2+ accumulation as the intravesicular free Ca2+ was lowered suggesting that, at low concentrations, it acts on the uptake system only. Ca2+ accumulation was ten-fold more sensitive to the dye than Erythrosin B-induced neurotransmitter release reported by others. Higher dye concentrations (100 microM) caused Ca2+ release.  相似文献   

18.
Acid and alkaline phosphosphatase activities of subcellular fractions isolated from rat gastric muscle and vas deferens by differential centrifugation, sucrose density gradient and cation-induced aggregation methods were studied using p-nitrophenyl phosphate as the substrate. Alkaline phosphatase and a large portion of acid phosphatase activities were found to be of plasmalemmal origin. Acid and alkaline phosphatase activities were different in the effect of Mg2+, fluoride, vanadate, EDTA and resistance to heat inactivation suggesting that these two phosphatase activities were not expressed by the same enzyme.  相似文献   

19.
A calmodulin-stimulated Ca2+ pump in rat aorta plasma membranes   总被引:3,自引:0,他引:3  
An ATP-driven Ca2+-transport system has been characterized in a microsomal fraction from rat aorta. Calmodulin enhanced 2.5-fold 45Ca accumulation by EGTA-treated microsomes incubated with 10 microM Ca2+ (in the absence of oxalate) by increasing markedly the apparent affinity of the transport system for Ca2+. The ionophore A23187 induced a rapid release of the sequestered 45Ca. The vesicles that took up 45Ca were distributed like plasmalemmal marker enzymes when the microsomal fraction was subfractionated by density gradient centrifugation. In particular, these vesicles were markedly shifted towards higher equilibrium densities after addition to the microsomes of 0.2 mg digitonin/mg protein before isopycnic centrifugation. We conclude that the calmodulin-stimulated Ca2+ pump associated with the microsomal fraction is located in plasmalemmal elements.  相似文献   

20.
Isopycnic centrifugation experiments using sucrose density gradients showed that in digitonin-treated microsomes the distribution of the plasma membrane (PM) marker 5'-nucleotidase was shifted to higher densities. The treatment also caused similar but less pronounced changes in the distribution of protein, the putative endoplasmic reticulum (ER) marker NADPH-dependent cytochrome c reductase, and the inner mitochondrial marker cytochrome c oxidase. Similar experiments using more purified membrane fractions showed that the digitonin treatment led to a comparable increase in the densities of the fractions N1 and N2 previously described as subfractions of plasma membrane and to considerably less increase in the density of the fraction N3B which is enriched in the endoplasmic reticulum and the inner mitochondrial markers. Digitonin inhibited the ATP-dependent Ca uptake by the N1 fraction in a concentration-dependent manner (I50 = 0.3 mg/mL). Digitonin (0.5 mg/mL) inhibited the ATP-dependent azide-insensitive Ca uptake by all the fractions. The results support the hypothesis that (a) N1 and N2 are subfractions of plasma membrane, and (b) ATP-dependent azide-insensitive Ca uptake in rat myometrium is a property of plasma membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号