首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism.  相似文献   

2.
A regulatory gene, cfxR, involved in the carbon dioxide assimilation of Alcaligenes eutrophus H16 has been characterized through the analysis of mutants. The function of cfxR is required for the expression of two cfx operons that comprise structural genes encoding Calvin cycle enzymes. CfxR (34.8 kDa) corresponds with an open reading frame of 954 bp, with a translational initiation codon 167 bp upstream of the chromosomal cfx operon. The cfx operon and cfxR are transcribed divergently. The N-terminal sequence of CfxR is very similar to those of bacterial regulatory proteins belonging to the LysR family. Heterologous expression of cfxR in Escherichia coli was achieved using the pT7-7 system. Mobility shift experiments demonstrated that CfxR is a DNA-binding protein with a target site upstream of both the chromosomal and the plasmid-encoded cfx operons.  相似文献   

3.
4.
5.
Abstract Hybridizations using heterologous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene probes suggested the existence of three GAPDH genes in Alcaligenes eutrophus H16. Two of these, located on the chromosome and the megaplasmid pHG1 of the organism, respectively, mapped about 2.5 kilobase pairs (kb) downstream of the two duplicated CO2 fixation gene clusters ( cfx genes). They were identified as GAPDH genes ( cfxG c and cfxG p ) by cloning and expression in Escherichia coli . These genes encode GAPDH isoenzymes functioning in the Calvin cycle. The third gene ( gap ) is chromosomally encoded but not linked to the cfx c cluster. Its product is probably involved in heterotrophic carbon metabolism.  相似文献   

6.
Genes coding for phosphoribulokinase (PRK), a key enzyme of the Calvin cycle, were localized in the genome of the chemoautotroph Alcaligenes eutrophus. The NH2-terminal sequence of the PRK subunit was determined. With a synthetic oligodeoxynucleotide probe complementary to a portion of this sequence, hybridization analysis revealed PRK genes to be located on both the chromosome and the megaplasmid pHG1 of A. eutrophus H16.  相似文献   

7.
8.
The nickel-cobalt-cadmium resistance genes carried by plasmid pTOM9 of Alcaligenes xylosoxidans 31A are located on a 14.5-kb BamHI fragment. By random Tn5 insertion mutagenesis, the fragment was shown to contain two distinct nickel resistance loci, ncc and nre. The ncc locus causes a high-level combined nickel, cobalt, and cadmium resistance in strain AE104, which is a cured derivative of the metal-resistant bacterium Alcaligenes eutrophus CH34. ncc is not expressed in Escherichia coli. The nre locus causes low-level nickel resistance in both Alcaligenes and E. coli strains. The nucleotide sequence of the ncc locus revealed seven open reading frames designated nccYXHCBAN. The corresponding predicted proteins share strong similarities with proteins encoded by the metal resistance loci cnr (cnrYXHCBA) and czc (czcRCBAD) of A. eutrophus CH34. When different DNA fragments carrying ncc genes were heterologously expressed under the control of the bacteriophage T7 promoter, five protein bands representing NccA (116 kDa), NccB (40 kDa), NccC (46 kDa), NccN (23.5 kDa), and NccX (16.5 kDa) were detected.  相似文献   

9.
S D Gupta  H C Wu    P D Rick 《Journal of bacteriology》1997,179(16):4977-4984
Three distinct clones from a Salmonella typhimurium genomic library were identified which suppressed the copper-sensitive (Cu(s)) phenotype of cutF mutants of Escherichia coli. One of these clones, pCUTFS2, also increased the copper tolerance of cutA, -C, and -E mutants, as well as that of a lipoprotein diacylglyceryl transferase (lgt) mutant of E. coli. Characterization of pCUTFS2 revealed that the genes responsible for suppression of copper sensitivity (scs) reside on a 4.36-kb DNA fragment located near 25.4 min on the S. typhimurium genome. Sequence analysis of this fragment revealed four open reading frames (ORF120, ORF627, ORF207, and ORF168) that were organized into two operons. One operon consisted of a single gene, scsA (ORF120), whereas the other operon contained the genes scsB (ORF627), scsC (ORF207), and scsD (ORF168). Comparison of the deduced amino acid sequences of the predicted gene products showed that ScsB, ScsC, and ScsD have significant homology to thiol-disulfide interchange proteins (CutA2, DipZ, CycZ, and DsbD) from E. coli and Haemophilus influenzae, to an outer membrane protein (Com1) from Coxiella burnetii, and to thioredoxin and thioredoxin-like proteins, respectively. The two operons were subcloned on compatible plasmids, and complementation analyses indicated that all four proteins are required for the increased copper tolerance of E. coli mutants. In addition, the scs locus also restored lipoprotein modification in lgt mutants of E. coli. Sequence analyses of the S. typhimurium scs genes and adjacent DNAs revealed that the scs locus is flanked by genes with high homology to the cbpA (predicted curved DNA-binding protein) and agp (acid glucose phosphatase) genes of E. coli located at 22.90 min (1,062.07 kb) and 22.95 min (1,064.8 kb) of the E. coli chromosome, respectively. However, examination of the E. coli chromosome revealed that these genes are absent at this locus and no evidence has thus been obtained for the occurrence of the scs locus elsewhere on the genome.  相似文献   

10.
Pseudomonas sp. strain P51 contains two gene clusters located on catabolic plasmid pP51 that encode the degradation of chlorinated benzenes. The nucleotide sequence of a 5,499-bp region containing the chlorocatechol-oxidative gene cluster tcbCDEF was determined. The sequence contained five large open reading frames, which were all colinear. The functionality of these open reading frames was studied with various Escherichia coli expression systems and by analysis of enzyme activities. The first gene, tcbC, encodes a 27.5-kDa protein with chlorocatechol 1,2-dioxygenase activity. The tcbC gene is followed by tcbD, which encodes cycloisomerase II (39.5 kDa); a large open reading frame (ORF3) with an unknown function; tcbE, which encodes hydrolase II (25.8 kDa); and tcbF, which encodes a putative trans-dienelactone isomerase (37.5 kDa). The tcbCDEF gene cluster showed strong DNA homology (between 57.6 and 72.1% identity) and an organization similar to that of other known plasmid-encoded operons for chlorocatechol metabolism, e.g., clcABD of Pseudomonas putida and tfdCDEF of Alcaligenes eutrophus JMP134. The identity between amino acid sequences of functionally related enzymes of the three operons varied between 50.6 and 75.7%, with the tcbCDEF and tfdCDEF pair being the least similar of the three. Measurements of the specific activities of chlorocatechol 1,2-dioxygenases encoded by tcbC, clcA, and tfdC suggested that a specialization among type II enzymes has taken place. TcbC preferentially converts 3,4-dichlorocatechol relative to other chlorinated catechols, whereas TfdC has a higher activity toward 3,5-dichlorocatechol. ClcA takes an intermediate position, with the highest activity level for 3-chlorocatechol and the second-highest level for 3,5-dichlorocatechol.  相似文献   

11.
From pMOL28, one of the two heavy metal resistance plasmids of Alcaligenes eutrophus strain CH34, we cloned an EcoRI-PstI fragment into plasmid pVDZ'2. This hybrid plasmid conferred inducible nickel and cobalt resistance (cnr) in two distinct plasmid-free A. eutrophus hosts, strains AE104 and H16. Resistances were not expressed in Escherichia coli. The nucleotide sequence of the 8.5-kb EcoRI-PstI fragment (8,528 bp) revealed seven open reading frames; two of these, cnrB and cnrA, were assigned with respect to size and location to polypeptides expressed in E. coli under the control of the bacteriophage T7 promoter. The genes cnrC (44 kDa), cnrB (40 kDa), and cnrA (115.5 kDa) are probably structural genes; the gene loci cnrH (11.6 kDa), cnrR (tentatively assigned to open reading frame 1 [ORF]; 15.5 kDa), and cnrY (tentatively assigned to ORF0ab; ORF0a, 11.0 kDa; ORF0b, 10.3 kDa) are probably involved in the regulation of expression. ORF0ab and ORF1 exhibit a codon usage that is not typical for A. eutrophus. The 8.5-kb EcoRI-PstI fragment was mapped by Tn5 transposon insertion mutagenesis. Among 72 insertion mutants, the majority were nickel sensitive. The mutations located upstream of cnrC resulted in various phenotypic changes: (i) each mutation in one of the gene loci cnrYRH caused constitutivity, (ii) a mutation in cnrH resulted in different expression of cobalt and nickel resistance in the hosts H16 and AE104, and (iii) mutations in cnrY resulted in two- to fivefold-increased nickel resistance in both hosts. These genes are considered to be involved in the regulation of cnr. Comparison of cnr of pMOL28 with czc of pMOL30, the other large plasmid of CH34, revealed that the structural genes are arranged in the same order and determine proteins of similar molecular weights. The largest protein CnrA shares 46% amino acid similarity with CzcA (the largest protein of the czc operon). The other putative gene products, CnrB and CnrC, share 28 and 30% similarity, respectively, with the corresponding proteins of czc.  相似文献   

12.
13.
In the facultative chemoautotroph Alcaligenes eutrophus H16, most of the genes (cbb genes) encoding enzymes of the Calvin carbon reduction cycle are organized within two highly homologous cbb operons, one located on the chromosome and the other on the megaplasmid pHG1. Nucleotide sequencing of the promoter-distal part of the operons revealed three open reading frames, designated cbbG, cbbK, and cbbA. Similarity searches in databases and heterologous expressions of the subcloned genes in Escherichia coli identified them as genes encoding the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and a class II fructose-1,6-bisphosphate aldolase, respectively. The aldolase could be grouped together with the enzymes from Rhodobacter sphaeroides and Bacillus subtilis as a new subtype of class II aldolases. A phenotypic complementation analysis with a cbb operon mutant of A. eutrophus showed that the cbbG product is essential for autotrophic growth of the organism, whereas the products of cbbK and cbbA can apparently be substituted by isoenzymes encoded elsewhere on the chromosome. No or only low constitutive promoter activity was associated with cbbK and cbbA, respectively, confirming the two genes as parts of the cbb operon. Downstream of cbbA, the very high overall nucleotide sequence identity (about 94%) prevailing throughout the two cbb operons discontinues, suggesting that cbbA is the most promoter-distal gene of the operon.Abbreviations FBA Fructose 1,6-bisphosphate aldolase - GAPDH Glyceraldehyde-3-phosphate dehydrogenase - PRK Phosphoribulokinase - RubisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

14.
15.
A 6.3 kb fragment of E.coli RFL57 DNA coding for the type IV restriction-modification system Eco57I was cloned and expressed in E.coli RR1. A 5775 bp region of the cloned fragment was sequenced which contains three open reading frames (ORF). The methylase gene is 1623 bp long, corresponding to a protein of 543 amino acids (62 kDa); the endonuclease gene is 2991 bp in length (997 amino acids, 117 kDa). The two genes are transcribed convergently from different strands with their 3'-ends separated by 69 bp. The third short open reading frame (186 bp, 62 amino acids) has been identified, that precedes and overlaps by 7 nucleotides the ORF encoding the methylase. Comparison of the deduced Eco57I endonuclease and methylase amino acid sequences revealed three regions of significant similarity. Two of them resemble the conserved sequence motifs characteristic of the DNA[adenine-N6] methylases. The third one shares similarity with corresponding regions of the PaeR7I, TaqI, CviBIII, PstI, BamHI and HincII methylases. Homologs of this sequence are also found within the sequences of the PaeR7I, PstI and BamHI restriction endonucleases. This is the first example of a family of cognate restriction endonucleases and methylases sharing homologous regions. Analysis of the structural relationship suggests that the type IV enzymes represent an intermediate in the evolutionary pathway between the type III and type II enzymes.  相似文献   

16.
A gene bank of the 450-kilobase (kb) megaplasmid pHG1 from the hydrogen-oxidizing bacterium Alcaligenes eutrophus H16 was constructed in the broad-host-range mobilizable vector pSUP202 and maintained in Escherichia coli. hox DNA was identified by screening the E. coli gene bank for restoration of hydrogenase activity in A. eutrophus Hox mutants. Hybrid plasmids that contained an 11.6-kb EcoRI fragment restored soluble NAD-dependent hydrogenase activity when transferred by conjugation into one class of Hos- mutants. An insertion mutant impaired in particulate hydrogenase was partially restored in Hop activity by an 11-kb EcoRI fragment. A contiguous sequence of two EcoRI fragments of 8.6 and 2.0 kb generated Hox+ recombinants from mutants that were devoid of both hydrogenase proteins. hox DNA was subcloned into the vector pVK101. The resulting recombinant plasmids were used in complementation studies. The results indicate that we have cloned parts of the structural genes coding for Hos and Hop activity and a complete regulatory hox DNA sequence which encodes the thermosensitive, energy-dependent derepression signal of hydrogenase synthesis in A. eutrophus H16.  相似文献   

17.
18.
Three copper-resistant, gram-negative bacteria were isolated and characterized. Of the three strains, Alcaligenes denitrificans AH tolerated the highest copper concentration (MIC = 4 mM CuSO(4)). All three strains showed various levels of resistance to other metal ions. A. denitrificans AH contains sequences which cross-hybridized with the mer (mercury resistance) determinant of Tn21 and the czc (cobalt, zinc, and cadmium resistance), cnr (cobalt and nickel resistance), and chr (chromate resistance) determinants of A. eutrophus CH34. DNA-DNA hybridization with probes prepared from A. eutrophus CH34 and Tn21 revealed the presence of chr-, cnr-, and mer-like sequences on the 200-kb plasmid pHG27 and of czc, cnr, and mer homologs located on the chromosome. The second strain, classified as Alcaligenes sp. strain PW, carries czc, cnr, and mer homologs on the 240-kb plasmid pHG29-c and a chr determinant on the 290-kb plasmid pHG29-a; a third plasmid, the 260-kb large plasmid pHG29-b, is cryptic. In contrast to the Alcaligenes strains, which were isolated from metal-contaminated water, Pseudomonas paucimobilis CD was isolated from the air. This strain harbors two cryptic plasmids: the 210-kb large plasmid pHG28-a and the 40-kb plasmid pHG28-b. Southern analysis revealed no homology between the metal ion resistance determinants of A. eutrophus CH34 and P. paucimobilis CD.  相似文献   

19.
20.
S Milanez  R J Mural 《Gene》1988,66(1):55-63
Phosphoribulokinase (PRK) is a key enzyme in the Calvin cycle of autotrophic organisms. We have constructed a spinach leaf cDNA library in the phage expression vector, lambda gt11, and used a rabbit polyclonal antibody raised against spinach PRK to identify PRK clones. Analyses of the nucleotide sequences of two antibody-positive clones, 1.47 and 1.35 kb in length, showed that they encode a protein which contains the N-terminal amino acid (aa) sequence [Porter et al., Arch. Biochem. Biophys. 245 (1986) 14-23] of mature spinach PRK. The codon for the N-terminal serine of the mature protein occurs 170 bp from the 5' end of the open reading frame (ORF), suggesting that PRK is synthesized with a rather long transit peptide which is removed from the mature enzyme. The ORF, ending with an amber (TAG) codon at position 1054, predicts a mature enzyme of 351 aa with a calculated Mr of 39232.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号