首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

2.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

3.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

4.
The protein phosphatase activities involved in regulating the major pathways of intermediary metabolism can be explained by only four enzymes which can be conveniently divided into two classes, type-1 and type-2. Type-1 protein phosphatases dephosphorylate the beta-subunit of phosphorylase kinase and are potently inhibited by two thermostable proteins termed inhibitor-1 and inhibitor-2, whereas type-2 protein phosphatases preferentially dephosphorylate the alpha-subunit of phosphorylase kinase and are insensitive to inhibitor-1 and inhibitor-2. The substrate specificities of the four enzymes, namely protein phosphatase-1 (type-1) and protein phosphatases 2A, 2B and 2C (type-2) have been investigated. Eight different protein kinases were used to phosphorylate 13 different substrate proteins on a minimum of 20 different serine and threonine residues. These substrates include proteins involved in the regulation of glycogen metabolism, glycolysis, fatty acid synthesis, cholesterol synthesis, protein synthesis and muscle contraction. The studies demonstrate that protein phosphatase-1 and protein phosphatase 2A have very broad substrate specificities. The major differences, apart from the site specificity for phosphorylase kinase, are the much higher myosin light chain phosphatase and ATP-citrate lyase phosphatase activities of protein phosphatase-2A. Protein phosphatase-2C (an Mg2+-dependent enzyme) also has a broad specificity, but can be distinguished from protein phosphatase-2A by its extremely low phosphorylase phosphatase and histone H1 phosphatase activities, and its slow dephosphorylation of sites (3a + 3b + 3c) on glycogen synthase relative to site-2 of glycogen synthase. It has extremely high hydroxymethylglutaryl-CoA (HMG-CoA) reductase phosphatase and HMG-CoA reductase kinase phosphatase activity. Protein phosphatase-2B (a Ca2+-calmodulin-dependent enzyme) is the most specific phosphatase and only dephosphorylated three of the substrates (the alpha-subunit of phosphorylase kinase, inhibitor-1 and myosin light chains) at a significant rate. It is specifically inhibited by the phenathiazine drug, trifluoperazine. Examination of the amino acid sequences around each phosphorylation site does not support the idea that protein phosphatase specificity is determined by the primary structure in the immediate vicinity of the phosphorylation site.  相似文献   

5.
Protein phosphatases present in the particulate and soluble fractions of oocytes of the starfish Asterias rubens and Marthasterias glacialis have been classified according to the criteria used for these enzymes from mammalian cells. The major protein phosphatase activity in the particulate fraction had very similar properties to protein phosphatase-1 from mammalian tissues, including preferential dephosphorylation of the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition of phosphorylase phosphatase activity by protamine and heparin, and retention by heparin-Sepharose. The major protein phosphatase in the soluble fraction had very similar properties to mammalian protein phosphatase-2A, including preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and 2, activation by protamine and heparin, and exclusion from heparin-Sepharose. An acid-stable and heat-stable protein was detected in the soluble fraction of starfish oocytes, whose properties were indistinguishable from those of inhibitor-2 from mammalian tissues. It inhibited protein phosphatase-1 specifically, and its apparent molecular mass on SDS polyacrylamide gels was 31 kDa. Furthermore, an inactive hybrid formed between the starfish oocyte inhibitor and the catalytic subunit of mammalian protein phosphatase-1 could be reactivated by preincubation with MgATP and mammalian glycogen synthase kinase-3. The remarkable similarities between starfish oocyte protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation of these enzymes. The results will facilitate further analysis of the role of protein phosphorylation in the control of starfish oocyte maturation by the hormone 1-methyladenine.  相似文献   

6.
S Alemany  P Cohen 《FEBS letters》1986,198(2):194-202
The dephosphorylation of glycogen synthase by protein phosphatase-1 in hepatic glycogen and microsomes was inhibited by nanomolar concentrations of phosphorylase a. The I50 for phosphorylase a was 1000-fold lower than its Km as a substrate, while tryptic digestion increased the I50 1000-fold without affecting Km. Protein phosphatase-1 from skeletal muscle and protein phosphatase-2A from liver were only inhibited at 1000-fold higher concentrations. Protein phosphatase-1 became desensitized to phosphorylase a when released from hepatic microsomes, but sensitivity was partially restored by readdition of the solubilized enzyme to the microsomes. The results demonstrate that phosphorylase a is a potent allosteric inhibitor of hepatic protein phosphatase-1 and suggest that inhibition may be conferred by a novel phosphorylase a-binding subunit.  相似文献   

7.
Activation of phosphorylase in intact glycogen particles from skeletal muscle by Ca2+ and MgATP is known as flash activation. By using [gamma-32P]ATP to monitor protein phosphorylation, we have demonstrated that there is, coincident with phosphorylase activation and inactivation, coordinated phosphorylation/dephosphorylation of phosphorylase, glycogen synthase, the beta-subunit of phosphorylase kinase and proteins of Mr = 43,000 and 32,000. Our results show that within the glycogen particle phosphorylase kinase and type-1 protein phosphatase are organized to allow access to a set of protein components. This arrangement may contribute to the reciprocal regulation of their activities.  相似文献   

8.
The protein phosphatases of Drosophila melanogaster and their inhibitors   总被引:2,自引:0,他引:2  
Protein phosphatases-1, 2A and 2B have been identified in membrane and soluble fractions of Drosophila melanogaster heads. Similarities between Drosophila and mammalian protein phosphatase-1 included specificity for the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition by protamine, retention by heparin-Sepharose and selective interaction with membranes. In addition, an inactive form of protein phosphatase-1, termed protein phosphatase-1I, was detected in the soluble fraction that could be activated by preincubation with MgATP and mammalian glycogen synthase kinase-3. Inhibitor-2 partially purified from Drosophila had an identical molecular mass to its mammalian counterpart, and recombined with mammalian protein phosphatase-1 to form a hybrid protein phosphatase-1I. Similarities between Drosophila and mammalian protein phosphatase-2A included preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and -2, activation by protamine, exclusion from heparin-Sepharose and apparent molecular mass. A Ca2+-dependent calmodulin-stimulated protein phosphatase (protein phosphatase-2B) that was inhibited by trifluoperazine was identified in the soluble fraction. The remarkable similarities between Drosophila protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation and demonstrate that the procedures used to classify mammalian protein phosphatases have a wider application. Characterisation of the Drosophila phosphatases will facilitate genetic analysis of dephosphorylation systems and their possible roles in neuronal and behavioural plasticity in Drosophila.  相似文献   

9.
A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian cells.  相似文献   

10.
The dephosphorylation of phosphorylase a by the catalytic subunit of protein phosphatase-1 obtained from rabbit skeletal muscle is inhibited by heparin in a noncompetitive manner with respect to phosphorylase a (Ki = 8 micrograms/ml). The inhibitory effect of heparin is also observed in the presence of effectors (e.g., glucose and AMP) modifying the dephosphorylation of phosphorylase a. Heat-stable protein inhibitors of protein phosphatase-1 can develop their inhibitory effect of the activity of protein phosphatase-1 even in the presence of heparin. The inhibitory effect of heparin and the heat-stable inhibitor-2 of phosphatase is additive. Polybrene, a heparin antagonist, prevented phosphatase-1 from the inhibition caused by heparin or the inhibitors. Proteins with basic character, histone fractions (H1, H3) and protamine sulfate, can counteract with the inhibitory effect of heparin, but they cannot intercept the actions of inhibitor-1 or -2.  相似文献   

11.
Three forms of protein phosphatase-1 were isolated from rabbit skeletal muscle that had Mr values of 37 000, 34 000 and 33 000 determined by sodium dodecyl sulphate (SDS) gel electrophoresis. Each species dephosphorylated the beta-subunit of phosphorylase kinase very much faster than the alpha-subunit, was inhibited by inhibitors 1 and 2 with equal potency, and was converted to a form dependent on glycogen synthase kinase-3 and Mg-ATP for activity by incubation with inhibitor-2. Digestion with cyanogen bromide or Staphylococcus aureus proteinase followed by SDS gel electrophoresis showed a very similar pattern of cleavage products for all three forms. The Mr-37 000 and Mr-34 000 species were converted to the Mr-33 000 form by incubation with chymotrypsin. It is concluded that the Mr-33 000 and Mr-34 000 forms are derived from the Mr-37 000 component by limited proteolysis. Conversion of the Mr-37 000 to the Mr-33 000 form was accompanied by a two-fold increase in activity, indicating that an Mr-4000 fragment at one end of the polypeptide is an inhibitory domain that decreases enzyme activity. The catalytic subunit of protein phosphatase 2A from rabbit skeletal muscle had an Mr of 36 000 determined by SDS gel electrophoresis and its specific activity (3 kU/mg) was much lower than that of the Mr-37 000 (15-20 kU/mg) or Mr-33/34 000 (40-50 kU/mg) forms of protein phosphatase-1. It dephosphorylated the alpha-subunit of phosphorylase kinase 4-5-fold faster than the beta-subunit, was unaffected by inhibitor-1 or inhibitor-2, and preincubation with the latter protein did not result in the production of a glycogen synthase kinase-3 and Mg-ATP-dependent form of the enzyme. Digestion with chymotrypsin did not alter the electrophoretic mobility of protein phosphatase 2A under conditions that caused quantitative conversion of the Mr-37 000 form of protein phosphatase-1 to the Mr-33 000 species. Digestion with cyanogen bromide or S. aureus proteinase, followed by SDS gel electrophoresis, showed a quite different pattern of cleavage products to those observed with protein phosphatase 1. Antibody to protein phosphatase-2A raised in sheep did not cross-react with any of the forms of protein phosphatase-1, as judged by immunoelectrophoretic and immunotitration experiments. It is concluded that protein phosphatase-1 and protein phosphatase-2A are distinct gene products.  相似文献   

12.
A type-1 protein phosphatase (protein phosphatase-1G) was purified to homogeneity from the glycogen-protein particle of rabbit skeletal muscle. Approximately 3 mg of enzyme were isolated within 4 days from 5000 g of muscle. Protein phosphatase-1G had a molecular mass of 137 kDa and was composed of two subunits G (103 kDa) and C (37 kDa) in a 1:1 molar ratio. The subunits could be dissociated by incubation in the presence of 2 M NaCl, separated by gel-filtration on Sephadex G-100, and recombined at low ionic strength. The C component was the catalytic subunit, and was identical to the 37-kDa type-1 protein phosphatase catalytic subunit (protein phosphatase-1C) isolated from ethanol-treated muscle extracts, as judged by peptide mapping. The G component was the glycogen-binding subunit. It was very asymmetric, extremely sensitive to proteolytic degradation, and failed to silver stain on SDS/polyacrylamide gels. Protein phosphatase-1G was inhibited by inhibitor-1 and inhibitor-2, but unlike protein phosphatase-1C, the rate of inactivation was critically dependent on the ionic strength, temperature and time of preincubation with the inhibitor protein. At near physiological temperature and ionic strength, protein phosphatase-1G was inactivated very rapidly by inhibitor-1. Protein phosphatase-1G interacted with inhibitor-2 (I-2) to form an inactive species, with the structure GCI-2. This form could be activated by preincubation with Mg-ATP and glycogen synthase kinase-3. The G subunit could be phosphorylated on a serine residue(s) by cyclic-AMP-dependent protein kinase, but not by phosphorylase kinase or glycogen synthase kinase-3. Phosphorylation was rapid and stoichiometric, and increased the rate of inactivation of protein phosphatase-1G by inhibitor-1. The relationship of the G subunit to the 'deinhibitor protein' is discussed.  相似文献   

13.
Protein phosphatase-2B was purified from extracts of rabbit skeletal muscle by a procedure that involved fractionation with ammonium sulphate, chromatography on DEAE-Sepharose, fractionation with poly(ethylene glycol), gel filtration on Sephadex G-200 (Mr = 98000 +/- 4000), chromatography on Affi-Gel Blue and affinity chromatography on calmodulin-Sepharose. The enzyme was purified 3500-fold in seven days with an overall yield of 0.5%. The alpha-subunit of phosphorylase kinase, protein phosphatase inhibitor-1 and the myosin P-light chain from rabbit skeletal muscle were dephosphorylated by protein phosphatase-2B with similar kinetic constants. The alpha-subunit of phosphorylase kinase was dephosphorylated at least 100-fold more rapidly than the beta-subunit, while glycogen phosphorylase, glycogen synthase, histones H1 and H2B, ATP-citrate lyase, acetyl-CoA carboxylase, L-pyruvate kinase and protein synthesis initiation factor eIF-2 were not dephosphorylated at significant rates. Protein phosphatase-2B became activated 10-fold by calmodulin (A0.5 = 6 nM) after chromatography on DEAE-Sepharose and this degree of activation was maintained throughout the remainder of the purification. Calmodulin increased the Vmax of the reaction without altering the Km for inhibitor-1. The activity of protein phosphatase-2B was completely dependent on Ca2+ in the presence or absence of calmodulin. Half-maximal activation was observed at 1.0 microM Ca2+ in the absence, and at 0.5 microM Ca2+ in the presence, of 0.03 microM calmodulin. Protein phosphatase-2B was inhibited completely by trifluoperazine; half-maximal inhibition occurred at 45 microM in the absence and 35 microM in the presence of 0.03 microM calmodulin. The metabolic role of protein phosphatase-2B in vivo is discussed in the light of the observation that this enzyme is probably identical to a major calmodulin-binding protein of neural tissue termed calcineurin or CaM-BP80 [Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. (1982) FEBS Lett. 137, 80-84].  相似文献   

14.
Protein phosphatase type 1 and type 2 activities (designated PP-1 and PP-2, respectively) from rabbit reticulocyte lysates have been identified and characterized based on criteria previously established for similar activities in rabbit skeletal muscle and rabbit liver. These include (a) chromatographic separation on DEAE-cellulose, (b) substrate specificity toward glycogen phosphorylase a and the alpha- and beta-subunits of phosphorylase kinase, (c) differential sensitivity to the heat-stable protein phosphatase inhibitors-1 and -2, and (d) sensitivity to MgATP. When total lysate phosphatases are assayed in the presence of 1 mM MnCl2, protein phosphatase type 2 represents 84% of lysate phosphorylase phosphatase activity. However, when phosphatase assays are carried out with MgATP concentrations similar to those in the lysate, type 2 activity is diminished, and the levels of type 1 (41%) and type 2 (59%) phosphatase activities are comparable. A small proportion (6%) of total lysate phosphatase is tightly bound to the ribosomes, where type 1 phosphatase predominates. At least five species of protein phosphatases can be identified in lysates. These constitute two forms of protein phosphatase type 1, one of which (designated FC) is dependent on MgATP and a lysate activator protein FA; both FC and FA have been identified previously in skeletal muscle. Three species of protein phosphatase type 2 have been identified and designated PP-2B, PP-2A1, and PP-2A2 based on criteria recently established for rabbit skeletal muscle and rabbit liver phosphatases, which display similar phosphatase profiles. Lysate protein phosphatases types 1, FC, 2A1, and 2A2 can all act on phosphorylase a and the alpha- (type 2) or beta-(type 1) subunit of phosphorylase kinase. PP-2B, a Ca2+/calmodulin-dependent phosphatase, specifically dephosphorylates the alpha-subunit of phosphorylase kinase, but does not act on phosphorylase alpha. The heat-stable protein phosphatase inhibitor-2 from skeletal muscle completely blocks the activity of the two type 1 phosphatases (PP-1, FC), but has no effect on the three species of type 2 protein phosphatase. A preliminary assay of the two heat-stable phosphatase inhibitors in lysates indicates significant levels of inhibitor-2, but little or no detectable inhibitor-1.  相似文献   

15.
To gain more insight into the nature of the substrate specificity of protein phosphatases, four forms of glycogen synthase D were used as substrates for previously characterized protein phosphatases, IA, IB, and II, from rat liver cytosol. The phosphatase activity was measured as the conversion of glycogen synthase D to synthase I. While glycogen synthase isolated from rat liver as the D-form was activated mainly by phosphatase IA, rabbit skeletal muscle glycogen synthase previously phosphorylated in vitro by cyclic AMP-dependent protein kinase or phosphorylase kinase was activated efficiently by phosphatases IA, IB, and II. Glycogen synthase isolated from rabbit skeletal muscle as the D-form, however, was a poor substrate for all three phosphatases. These results suggest that the phosphorylation state as well as the primary structure of synthase D markedly affects the rate of its activation by individual protein phosphatases. A protein phosphatase released from rat liver particulate glycogen, on the other hand, activated all forms of synthase D used here readily and at about the same rate.  相似文献   

16.
Inhibitor-2, purified by an improved procedure, was used to identify protein phosphatases capable of catalysing its dephosphorylation. The results showed that, under our experimental conditions, protein phosphatases-1, 2A and 2B were the only significant protein phosphatases in rabbit skeletal muscle extracts acting on this substrate. Protein phosphatases-1 and 2A accounted for all the inhibitor-2 phosphatase activity in the absence of Ca2+ (resting muscle), and the potential importance of these enzymes in vivo is discussed. Protein phosphatase-2B, a Ca2+-calmodulin-dependent enzyme, could account for up to 30% of the inhibitor-2 phosphatase activity in contracting muscle. The Km of protein phosphatase-1 for inhibitor-2 (40 nM) was 100-fold lower than the Km for phosphorylase a (4.8 microM). This finding, coupled with the failure of inhibitor-2 to inhibit its own dephosphorylation, suggests that inhibitor-2 is dephosphorylated at one of the two sites on protein phosphatase-1 involved in preventing the dephosphorylation of other substrates. The dephosphorylation of inhibitor-2 by protein phosphatase-1 was also unaffected by inhibitor-1, suggesting that the phosphorylation state of inhibitor-2 is unlikely to be controlled by cyclic AMP in vivo.  相似文献   

17.
A glycogen synthase phosphatase was purified from the yeast Saccharomyces cerevisiae. The purified yeast phosphatase displayed one major protein band which coincided with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis. This phosphatase had a molecular mass of about 160,000 Da determined by gel filtration and was comprised of three subunits, termed A, B, and C. The subunit molecular weights estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 60,000 (A), 53,000 (B), and 37,000 (C), indicating that this yeast glycogen synthase phosphatase is a heterotrimer. On ethanol treatment, the enzyme was dissociated to an active species with a molecular weight of 37,000 estimated by gel filtration. The yeast phosphatase dephosphorylated yeast glycogen synthase, rabbit muscle glycogen phosphorylase, casein, and the alpha subunit of rabbit muscle phosphorylase kinase, was not sensitive to heat-stable protein phosphatase inhibitor 2, and was inhibited 90% by 1 nM okadaic acid. Dephosphorylation of glycogen synthase, phosphorylase, and phosphorylase kinase by this yeast enzyme could be stimulated by histone H1 and polylysines. Divalent cations (Mg2+ and Ca2+) and chelators (EDTA and EGTA) had no effect on dephosphorylation of glycogen synthase or phosphorylase while Mn2+ stimulated enzyme activity by approximately 50%. The specific activity and kinetics for phosphorylase resembled those of mammalian phosphatase 2A. An antibody against a synthetic peptide corresponding to the carboxyl terminus of the catalytic subunit of rabbit skeletal muscle protein phosphatase 2A reacted with subunit C of purified yeast phosphatase on immunoblots, whereas the analogous peptide antibody against phosphatase 1 did not. These data show that this yeast glycogen synthase phosphatase has structural and catalytic similarity to protein phosphatase 2A found in mammalian tissues.  相似文献   

18.
Heparin inhibits the activity of protein phosphatase-1   总被引:1,自引:0,他引:1  
P Gergely  F Erd?di  G Bot 《FEBS letters》1984,169(1):45-48
Heparin inhibited the dephosphorylation of rabbit skeletal muscle or liver phosphorylase a by protein phosphatase-1. Other glycosaminoglycans (chondroitin sulfates) and their constituents were found to be without effect. The chromatography of a partially purified phosphatase preparation on heparin-Sepharose CL-6B resulted in a fraction that did not bind to the matrix and its activity was not inhibited by heparin or inhibitor-1. The phosphatase bound to heparin-Sepharose was eluted by 0.2 M NaCl and was inhibited by heparin or inhibitor-1.  相似文献   

19.
Upon fractionation of a postmitochondrial supernatant from rat liver, the synthase phosphatase (EC 3.1.3.42) activity (assayed at high tissue concentrations) was largely recovered in the glycogen fraction and to a minor extent in the cytosol. In contrast, the phosphorylase phosphatase (EC 3.1.3.17) activity was approximately equally distributed between these two fractions, a lesser amount being recovered in the microsomal fraction. The phosphatase activities in the microsomal and glycogen fractions were almost completely inhibited by a preincubation with the modulator protein, a specific inhibitor of type-1 (ATP,Mg-dependent) protein phosphatases. In the cytosolic fraction, however, type-2A (polycation-stimulated) phosphatase(s) contributed significantly to the dephosphorylation of phosphorylase and of in vitro phosphorylated muscular synthase. Liver synthase b, used as substrate for the measurement of synthase phosphatase throughout this work, was only activated by modulator-sensitive phosphatases. Trypsin treatment of the subcellular fractions resulted in a dramatically increased (up to 1000-fold) sensitivity to modulator, a several-fold increase in phosphorylase phosphatase activity and a complete loss of synthase phosphatase activity. Similar changes occurred during dilution of the glycogen-bound enzyme. A preincubation with the deinhibitor protein, which is known to counteract the effects of inhibitor-1 and modulator, increased several-fold the phosphorylase phosphatase activity, but exclusively in the cytosolic and microsomal fractions. It did not affect the synthase phosphatase activity. Taken together, the results indicate the existence of distinct, multi-subunit type-1 phosphatases in the cytosolic, microsomal and glycogen fractions.  相似文献   

20.
1. Glycogen synthase from rabbit skeletal muscle was phosphorylated by phosphorylase kinase to yield synthase b2. 2. Dephosphorylation and activation of synthase b2 by the catalytic subunits of protein phosphatase-1 (PP-1c) and protein phosphatase-2A (PP-2Ac) was studied. The apparent Km of PP-1c and PP-2Ac were 3.3 microM and 6.2 microM, respectively. The apparent Vmax of PP-1c was about two times larger than that of PP-2Ac. 3. Ligands with phosphate moiety (AMP, glucose-6-P at high concentration) caused an inhibition in dephosphorylation by both phosphatases. Spermine inhibited the dephosphorylation by PP-1c and stimulated the action of PP-2Ac. Therefore it can be employed to distinguish the phosphatases using synthase b2 as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号