首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Two purified fractions from Clostridium thermoaceticum are shown to catalyze the following reaction: CO + CH3THF + CoA ATP leads to CH3COCoA + THF. The methyltetrahydrofolate (CH3THF) gives rise to the methyl group of the acetyl-coenzyme A (CoA) and the carbon monoxide (CO) and CoA to its carboxyl thio ester group. The role of ATP is unknown. One of the protein fractions (F2) is a methyltransferase, whereas the other fraction (F3) contains CO dehydrogenase and a methyl acceptor which is postulated to be a corrinoid enzyme. The methyltransferase catalyzes the transfer of the methyl group to the methyl acceptor, and the CO is converted to a formyl derivative by the CO dehydrogenase. By a mechanism that is as yet unknown, the formyl derivative in combination with CoA and the methyl of the methyl acceptor are converted to acetyl-CoA. It is also shown that fraction F3 catalyzes the reversible exchange of 14C from [1-14C]acetyl-CoA into 14CO and that ATP is required, but not the methyltransferase. It is proposed that these reactions are part of the mechanism which enables certain autotrophic bacteria to grow on CO. It is postulated that CH3THF is synthesized from CO and tetrahydrofolate which then, as described above, is converted to acetyl-CoA. The acetyl-CoA then serves as a precursor in other anabolic reactions. A similar autotropic pathway may occur in bacteria which grow on carbon dioxide and hydrogen.  相似文献   

2.
CO dehydrogenase, a key enzyme of the acetyl-CoA pathway of autotrophic growth, has been methylated using 14CH3I or 14CH3-corrinoid enzyme plus ferredoxin. Acetyl-CoA was synthesized from the resulting 14CH3-CO dehydrogenase, CO, and CoASH, with about 50% yield of the available 14C and without addition of other enzymes except CO dehydrogenase disulfide reductase. Even the reductase could be replaced by dithioerythritol. Amino acid analysis of the 14CH3-CO dehydrogenase showed two radioactive peaks, one of which migrated as S-methylcysteine but very close to the methyl ester of glutamic acid. By oxidation with H2O2, the radioactive component of this peak was identified as S-methylcysteine sulfone. Amino acid analysis of the 14CH3-CO dehydrogenase after synthesis of acetyl-CoA demonstrated that there was a large decrease in radioactivity of the peak containing the S-methyl-cysteine. The compound present in the second peak has not been identified; there was no decrease in its radioactivity. By nonreducing gel electrophoresis of the 14CH3-CO dehydrogenase, followed by autoradiography, it was shown that the beta subunit is the methyl acceptor. These results demonstrate that a cysteine of the beta subunit is the methyl acceptor and that CO dehydrogenase per se catalyzes the synthesis of acetyl-CoA.  相似文献   

3.
During the methanogenic fermentation of acetate by Methanosarcina thermophila, the CO dehydrogenase complex cleaves acetyl coenzyme A and oxidizes the carbonyl group (or CO) to CO2, followed by electron transfer to coenzyme M (CoM)-S-S-coenzyme B (CoB) and reduction of this heterodisulfide to HS-CoM and HS-CoB (A. P. Clements, R. H. White, and J. G. Ferry, Arch. Microbiol. 159:296-300, 1993). The majority of heterodisulfide reductase activity was present in the soluble protein fraction after French pressure cell lysis. A CO:CoM-S-S-CoB oxidoreductase system from acetate-grown cells was reconstituted with purified CO dehydrogenase enzyme complex, ferredoxin, membranes, and partially purified heterodisulfide reductase. Coenzyme F420 (F420) was not required, and CO:F420 oxidoreductase activity was not detected in cell extracts. The membranes contained cytochrome b that was reduced with CO and oxidized with CoM-S-S-CoB. The results suggest that a novel CoM-S-S-CoB reducing system operates during acetate conversion to CH4 and CO2. In this system, ferredoxin transfers electrons from the CO dehydrogenase complex to membrane-bound electron carriers, including cytochrome b, that are required for electron transfer to the heterodisulfide reductase. The cytochrome b was purified from solubilized membrane proteins in a complex with six other polypeptides. The cytochrome was not reduced when the complex was incubated with H2 or CO, and H2 uptake hydrogenase activity was not detected; however, the addition of CO dehydrogenase enzyme complex and ferredoxin enabled the CO-dependent reduction of cytochrome b.  相似文献   

4.
Acetogenic bacteria, as determined with Clostridium thermoaceticum, synthesize acetate by the acetyl-CoA pathway which involves the reduction of CO2 to a methyl group and then combination of the methyl with CoA and a carbonyl group formed from CO or CO2 (Wood, H.G., Ragsdale, S.W., and Pezacka, E. (1986) Trends Biochem. Sci. 11, 14-18). Carbon monoxide dehydrogenase (CODH), the key enzyme in this pathway not only catalyzes the oxidation of CO to CO2 but also the final step, the synthesis of acetyl-CoA from a methyl group, CO, and CoA. Previously, it has been shown that ferredoxin can stimulate exchange of CO with CH3 14COSCoA (Ragsdale, S.W., and Wood, H.G. (1985) J. Biol. Chem. 260, 3970-3977). In the present study, it has been observed that ferredoxin and CODH can form an electrostatically stabilized complex. In order to identify the ferredoxin binding region on CODH, the ferredoxin and CODH were cross-linked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The cross-linked CODH-ferredoxin adduct was enzymatically as active as the uncross-linked complex. The native CODH and cross-linked CODH-ferredoxin complex were subjected to cyanogen bromide cleavage. By comparison of the high-performance liquid chromatography peptide profiles, it was observed that the mobility of at least one peptide is altered in the CODH-ferredoxin cross-linked complex. The peptide was identified with residues 229-239 of the alpha-subunit of CODH.  相似文献   

5.
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.  相似文献   

6.
The activities of pure and mixed cultures of Desulfovibrio vulgaris and Methanosarcina barkeri in the exponential growth phase were monitored by measuring changes in dissolved-gas concentration by membrane-inlet mass spectrometry. M. barkeri grown under H2-CO2 or methanol produced limited amounts of methane and practically no hydrogen from either substrate. The addition of CO resulted in a transient H2 production concomitant with CO consumption. Hydrogen was then taken up, and CH4 production increased. All these events were suppressed by KCN, which inhibited carbon monoxide dehydrogenase activity. Therefore, with both substrates, H2 appeared to be an intermediate in CO reduction to CH4. The cells grown on H2-CO2 consumed 4 mol of CO and produced 1 mol of CH4. Methanol-grown cells reduced CH3OH with H2 resulting from carbon monoxide dehydrogenase activity, and the ratio was then 1 mol of CH4 to 1 mol of CO. Only 12CH4 and no 13CH4 was obtained from 13CO, indicating that CO could not be the direct precursor of CH4. In mixed cultures of D. vulgaris and M. barkeri on lactate, an initial burst of H2 was observed, followed by a lower level of production, whereas methane synthesis was linear with time. Addition of CO to the mixed culture also resulted in transient extra H2 production but had no inhibitory effect upon CH4 formation, even when the sulfate reducer was D. vulgaris Hildenborough, whose periplasmic iron hydrogenase is very sensitive to CO. The hydrogen transfer is therefore probably mediated by a less CO-sensitive nickel-iron hydrogenase from either of both species.  相似文献   

7.
Cell extracts from acetate-grown Methanosarcina thermophila contained CO-oxidizing:H2-evolving activity 16-fold greater than extracts from methanol-grown cells. Following fractionation of cell extracts into soluble and membrane components, CO-dependent H2 evolution and CO-dependent methyl-coenzyme M methylreductase activities were only present in the soluble fraction, but addition of the membrane fraction enhanced both activities. A b-type cytochrome(s), present in the membrane fraction, was linked to a membrane-bound hydrogenase. CO-oxidizing:H2-evolving activity was reconstituted with: (i) CO dehydrogenase complex, (ii) a ferredoxin, and (iii) purified membranes with associated hydrogenase. The ferredoxin was a direct electron acceptor for the CO dehydrogenase complex. The ferredoxin also coupled CO oxidation by CO dehydrogenase complex to metronidazole reduction.  相似文献   

8.
R Fischer  R K Thauer 《FEBS letters》1990,269(2):368-372
Cell extracts of Methanosarcina barkeri grown on acetate catalyzed the conversion of acetyl-CoA to CO2 and CH4 at a specific rate of 50 nmol min-1 mg-1. When ferredoxin was removed from the extracts by DEAE-Sephacel anion exchange chromatography, the extracts were inactive but full activity was restored upon addition of purified ferredoxin from M. barkeri or from Clostridium pasteurianum. The apparent Km for ferredoxin from M. barkeri was determined to be 2.5 M. A ferredoxin dependence was also found for the formation of CO2, H2 and methylcoenzyme M from acetyl-CoA, when methane formation was inhibited by bromoethanesulfonate. Reduction of methyl-coenzyme M with H2 did not require ferredoxin. These and other data indicate that ferredoxin is involved as electron carrier in methanogenesis from acetate. Methanogenesis from acetyl-CoA in cell extracts was not dependent on the membrane fraction, which contains the cytochromes.  相似文献   

9.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

10.
Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.  相似文献   

11.
Many anaerobic bacteria fix CO2 via the acetyl-coenzyme A (CoA) (Wood) pathway. Carbon monoxide dehydrogenase (CODH), a corrinoid/iron-sulfur protein (C/Fe-SP), methyltransferase (MeTr), and an electron transfer protein such as ferredoxin II play pivotal roles in the conversion of methyltetrahydrofolate (CH3-H4folate), CO, and CoA to acetyl-CoA. In the study reported here, our goals were (i) to optimize the method for determining the activity of the synthesis of acetyl-CoA, (ii) to evaluate how closely the rate of synthesis of acetyl-CoA by purified enzymes approaches the rate at which whole cells synthesize acetate, and (iii) to determine which steps limit the rate of acetyl-CoA synthesis. In this study, CODH, MeTr, C/Fe-SP, and ferredoxin were purified from Clostridium thermoaceticum to apparent homogeneity. We optimized conditions for studying the synthesis of acetyl-CoA and found that when the reaction is dependent upon MeTr, the rate is 5.3 mumol min-1 mg-1 of MeTr. This rate is approximately 10-fold higher than that reported previously and is as fast as that predicted on the basis of the rate of in vivo acetate synthesis. When the reaction is dependent upon CODH, the rate of acetyl-CoA synthesis is approximately 0.82 mumol min-1 mg-1, approximately 10-fold higher than that observed previously; however, it is still lower than the rate of in vivo acetate synthesis. It appears that at least two steps in the overall synthesis of acetyl-CoA from CH3-H4folate, CO, and CoA can be partially rate limiting. At optimal conditions of low pH (approximately 5.8) and low ionic strength, the rate-limiting step involves methylation of CODH by the methylated C/Fe-SP. At higher pH values and/or higher ionic strength, transfer of the methyl group of CH3-H4folate to the C/Fe-SP becomes rate limiting.  相似文献   

12.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

13.
Life with CO or CO2 and H2 as a source of carbon and energy   总被引:4,自引:0,他引:4  
H G Wood 《FASEB journal》1991,5(2):156-163
An account is presented of the recent discovery of a pathway of growth by bacteria in which CO or CO2 and H2 are sources of carbon and energy. The Calvin cycle and subsequently other cycles were discovered in the 1950s, and in each the initial reaction of CO2 involved adding CO2 to an organic compound formed during the cyclic pathway (for example, CO2 and ribulose diphosphate). Studies were initiated in the 1950s with the thermophylic anaerobic organism Clostridium thermoaceticum, which Barker and Kamen had found fixed CO2 in both carbons of acetate during fermentation of glucose. The pathway of acetyl-CoA biosynthesis differs from all others in that two CO2 are combined with coenzyme A (CoASH) forming acetyl CoA, which then serves as the source of carbon for growth. This mechanism is designated the acetyl CoA pathway and some have called it the Wood pathway. A unique feature is the role of the enzyme carbon monoxide dehydrogenase (CODH), which catalyzes the conversion of CoASH, CO, and a methyl group to acetyl CoA, the final step of the pathway. The pathway involves the reduction of CO2 to formate, which then combines with tetrahydrofolate (THF) to form formyl THF. It in turn is reduced to CH3-THF. The methyl is then transferred to the cobalt on a corrinoid-containing enzyme. From there the methyl is transferred to CODH, and CO and CoASH bind with the enzyme at separate sites. Acetyl CoA is then synthesized. CODH would more properly be called carbon monoxide dehydrogenase-acetyl CoA synthase as it catalyzes oxidation of CO to CO2 and the synthesis of acetyl CoA. The solution of the mechanism of this pathway required more than 30 years, in part because the intermediate compounds are bound to enzymes, the enzymes are extremely sensitive to O2 and must be isolated under strictly anerobic conditions, and the role of a corrinoid and CODH was unprecedented. It is now apparent that this pathway occurs (perhaps with some modification) in many bacteria including the methane and sulfur bacteria. In some humans this pathway is catalyzed by the bacteria of the gut and acetate is produced rather than methane; it is calculated that 2.3 x 10(6) metric tons of acetate are formed daily from CO2. A similar synthesis occurs in the hind gut of termites. It is becoming apparent that the acetyl CoA pathway plays a significant role in the carbon cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Prebiotic synthesis in atmospheres containing CH4, CO,and CO2   总被引:2,自引:0,他引:2  
The prebiotic synthesis of organic compounds using a spark discharge on various simulated primitive earth atmospheres at 25 degrees C has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and whether NH3 was present, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all gave about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For a H2/CO2 ratio of 0, the yield of amino acids is extremely low (10(-3)%). Glycine is almost the only amino acid produced from CO and CO2 model atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that an abundance of amino acids more complex than glycine was required for the origin of life, then these results indicate the requirement for CH4 in the primitive atmosphere.  相似文献   

15.
Reduced ferredoxin:CO2 oxidoreductase (CO2 reductase) from Clostridium pasteurianum catalyzes the reduction of 'CO2' to formate with reduced ferredoxin, an isotopic exchange between 'CO2' and formate in the absence of ferredoxin, and the oxidation of formate to 'CO2' with oxidized ferredoxin. The active species of 'CO2', i.e. CO2 or HCO3 (H2CO3), utilized by the enzyme was determined. The method employed for the species identification was that of Copper et al. (1968). Both 'CO2' reduction to formate and the exchange reaction were studied. Data were obtained which are compatible with those expected if CO2 is the active species. The V and the dissociation constant Ks of the enzyme - CO2 complex in dependence of pH were determined from initial velocity studies of the exchange reaction. V was found to be only slightly affected by pH between 5.5 and 7.5. Ks was markedly dependent on pH; the constant increased with decreasing pH from 0.2 mM at pH 7.5 to 3 mM at pH 5.5.  相似文献   

16.
A novel hydrogenase has recently been found in methanogenic archaea. It catalyzes the reversible dehydrogenation of methylenetetrahydromethanopterin (CH2 = H4MPT) to methenyltetrahydromethanopterin (CH identical to H4MPT+) and H2 and was therefore named H2-forming methylenetetrahydromethanopterin dehydrogenase. The hydrogenase, which is composed of only one polypeptide with an apparent molecular mass of 43 kDa, does not mediate the reduction of viologen dyes with either H2 or CH2 = H4MPT. We report here that the purified enzyme from Methanobacterium thermoautotrophicum exhibits the following other unique properties: (a) the colorless protein with a specific activity of 2000 U/mg (Vmax) did not contain iron-sulfur clusters, nickel, or flavins; (b) the activity was not inhibited by carbon monoxide, acetylene, nitrite, cyanide, or azide; (c) the enzyme did not catalyze an isotopic exchange between 3H2 and 1H+; (d) the enzyme catalyzed the reduction of CH identical to H4MPT+ with 3H2 generating [methylene-3H]CH2 = H4MPT; and (e) the primary structure contained at most four conserved cysteines as revealed by a comparison of the DNA-deduced amino acid sequence of the proteins from M. thermoautotrophicum and Methanopyrus kandleri. None of the four cysteines were closely spaced as would be indicative for a (NiFe) hydrogenase or a ferredoxin-type iron-sulfur protein. Properties of the H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium wolfei are also described indicating that the enzyme from this methanogenic archaeon is very similar to the enzyme from M. thermoautotrophicum with respect both to molecular and catalytic properties.  相似文献   

17.
Eubacterium limosum KIST612 is one of the few acetogens that can produce butyrate from carbon monoxide. We have used a genome-guided analysis to delineate the path of butyrate formation, the enzymes involved, and the potential coupling to ATP synthesis. Oxidation of CO is catalyzed by the acetyl-coenzyme A (CoA) synthase/CO dehydrogenase and coupled to the reduction of ferredoxin. Oxidation of reduced ferredoxin is catalyzed by the Rnf complex and Na+ dependent. Consistent with the finding of a Na+-dependent Rnf complex is the presence of a conserved Na+-binding motif in the c subunit of the ATP synthase. Butyrate formation is from acetyl-CoA via acetoacetyl-CoA, hydroxybutyryl-CoA, crotonyl-CoA, and butyryl-CoA and is consistent with the finding of a gene cluster that encodes the enzymes for this pathway. The activity of the butyryl-CoA dehydrogenase was demonstrated. Reduction of crotonyl-CoA to butyryl-CoA with NADH as the reductant was coupled to reduction of ferredoxin. We postulate that the butyryl-CoA dehydrogenase uses flavin-based electron bifurcation to reduce ferredoxin, which is consistent with the finding of etfA and etfB genes next to it. The overall ATP yield was calculated and is significantly higher than the one obtained with H2 + CO2. The energetic benefit may be one reason that butyrate is formed only from CO but not from H2 + CO2.  相似文献   

18.
Methanosarcina barkeri has recently been shown to produce a multisubunit membrane-bound [NiFe] hydrogenase designated Ech (Escherichia coli hydrogenase 3) hydrogenase. In the present study Ech hydrogenase was purified to apparent homogeneity in a high yield. The enzyme preparation obtained only contained the six polypeptides which had previously been shown to be encoded by the ech operon. The purified enzyme was found to contain 0.9 mol of Ni, 11.3 mol of nonheme-iron and 10.8 mol of acid-labile sulfur per mol of enzyme. Using the purified enzyme the kinetic parameters were determined. The enzyme catalyzed the H2 dependent reduction of a M. barkeri 2[4Fe-4S] ferredoxin with a specific activity of 50 U x mg protein-1 at pH 7.0 and exhibited an apparent Km for the ferredoxin of 1 microM. The enzyme also catalyzed hydrogen formation with the reduced ferredoxin as electron donor at a rate of 90 U x mg protein-1 at pH 7.0. The apparent Km for the reduced ferredoxin was 7.5 microM. Reduction or oxidation of the ferredoxin proceeded at similar rates as the reduction or oxidation of oxidized or reduced methylviologen, respectively. The apparent Km for H2 was 5 microM. The kinetic data strongly indicate that the ferredoxin is the physiological electron donor or acceptor of Ech hydrogenase. Ech hydrogenase amounts to about 3% of the total cell protein in acetate-grown, methanol-grown or H2/CO2-grown cells of M. barkeri, as calculated from quantitative Western blot experiments. The function of Ech hydrogenase is ascribed to ferredoxin-linked H2 production coupled to the oxidation of the carbonyl-group of acetyl-CoA to CO2 during growth on acetate, and to ferredoxin-linked H2 uptake coupled to the reduction of CO2 to the redox state of CO during growth on H2/CO2 or methanol.  相似文献   

19.
CH4 formation from CO2 and H2 rather than from formaldehyde and H2 in methanogenic bacteria is inhibited by uncouplers, indicating that CO2 reduction to the formaldehyde level is energy-driven. We report here that in Methanosarcina barkeri the driving force is a primary electrochemical sodium potential (delta mu Na+) generated by formaldehyde reduction to CH4. This is concluded from the following findings. 1. CO2 reduction to CH4 was insensitive towards protonophores, when the Na+/H+ antiporter was inhibited; under these conditions delta mu Na+ was 120 mV (inside negative), whereas both delta mu H+ and the cellular ATP content were low. 2. CO2 reduction to CH4, rather than formaldehyde reduction, was sensitive towards Na+ ionophores, which dissipated delta mu Na+. 3. CO2 reduction to CH4, in the presence of protonophores and Na+/H+ antiport inhibitors, was coupled with the extrusion of 1-2 mol Na+/mol CH4, and formaldehyde reduction to CH4 was coupled with the extrusion of 3-4 mol Na+/mol CH4. Thus during CO2 reduction to the formaldehyde level 2-3 mol Na+ were consumed.  相似文献   

20.
Cell suspensions of methanogenic bacteria (Methanosarcina barkeri, Methanospirillum hungatei, Methano-brevibacter arboriphilus, and Methanobacterium thermoautotrophicum) were found to form CO from CO2 and H2 according to the reaction: CO2 + H2----CO + H2O; delta G0 = +20 kJ/mol. Up to 15,000 ppm CO in the gas phase were reached which is significantly higher than the equilibrium concentration calculated from delta G0 (95 ppm under the experimental conditions). This indicated that CO2 reduction with H2 to CO is energy-driven and indeed the cells only generated CO when forming CH4. The coupling of the two reactions was studied in more detail with acetate-grown cells of M. barkeri using methanogenic substrates. The effects of the protonophore tetrachlorosalicylanilide (TCS) and of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide (cHxN)2C were determined. TCS completely inhibited CO formation from CO2 and H2 without affecting methanogenesis from CH3OH and H2. In the presence of the protonophore the proton motive force delta p and the intracellular ATP concentration were very low. (cHxN)2C, which partially inhibited methanogenesis from CH3OH and H2, had no effect on CO2 reduction to CO. In the presence of (cHxN)2C delta p was high and the intracellular ATP content was low. These findings suggest that the endergonic formation of CO from CO2 and H2 is coupled to the exergonic formation of CH4 from CH3OH and H2 via the proton motive force and not via ATP. CO formation was not stimulated by the addition of sodium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号