首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The synthesis of cytochrome oxidase in Saccharomyces cerevisiae was recently shown to require a protein encoded by the nuclear gene COX10. This protein was found to be homologous to the putative protein product of the open reading frame ORF1 reported in one of the cytochrome oxidase operons of Paracoccus denitrificans. In the present study we demonstrate the existence in yeast of a second nuclear gene, COX11, whose encoded protein is homologous to another open reading frame (ORF3) present in the same operon of P. denitrificans. Mutations in COX11 elicit a deficiency in cytochrome oxidase. In this and in other respects cox11 and cox10 mutants have very similar phenotypes. An antibody has been obtained against the yeast COX11 protein. The antibody recognizes a 28 kd protein in yeast mitochondria, consistent with the size of the protein predicted from the sequence of COX11. The COX11 protein is tightly associated with the mitochondrial membrane but is not a component of purified cytochrome oxidase. An analysis of cytochrome oxidase subunits in wild type and in a cox11 mutant suggests that the COX11 protein is not required either for synthesis or transport of the subunit polypeptides into mitochondria. It seems more probable that COX11 protein exerts its effect at some terminal stage of enzyme synthesis, perhaps in directing assembly of the subunits.  相似文献   

3.
The gene COX VII coding for yeast cytochrome c oxidase subunit VII has been cloned by a two-step procedure. Two degenerate oligonucleotides corresponding to amino- and carboxyl-terminal protein segments were used in a polymerase chain reaction for the amplification of a major portion of subunit VII (residues 1-52), which was then used for the cloning of complete COX VII. From the nucleotide sequence, an additional amino-terminal and two additional carboxyl-terminal amino acids are predicted as compared with the described primary sequence (Power, S. D., Lochrie, M. A., and Poyton, R. O. (1986) J. Biol. Chem. 261, 9206-9209). Beside subunit VIIa the subunit described here is the only nuclear encoded subunit of cytochrome c oxidase in yeast without a leader sequence. COX VII exists as a single copy per haploid genome as shown by Southern blot and gene disruption. Null mutants produced by gene disruption at the COX VII locus were respiratory-deficient. No cytochrome c oxidase activity was detectable nor was there an assembly of the oxidase complex.  相似文献   

4.
Using synthetic oligodeoxyribonucleic acid probes we have identified and isolated COX6, the structural gene for subunit VI of cytochrome c oxidase from Saccharomyces cerevisiae. The nucleotide sequence of COX6 predicts an amino acid sequence, for the mature subunit VI polypeptide, which is in perfect agreement with that determined previously. The nucleotide sequence of COX6 also predicts that subunit VI is derived from a precursor with a highly basic 40-amino acid NH2-terminal presequence. This precursor has been observed after in vitro translations programmed by yeast poly(A+)RNA. Northern blot analysis of poly(A+) RNA from strain D273-10B reveals that COX6 is homologous to three RNAs of 1800, 900, and 700 bases in length. By means of Southern blot analysis, the cloned gene was shown to be co-linear with yeast chromosomal DNA and to exist in a single copy in the yeast genome. An additional open reading frame, consisting of 82 codons, terminates 22 codons upstream from COX6. It is "in frame" with the COX6 coding region.  相似文献   

5.
Vertebrate ferredoxins function in the transfer of reducing equivalents from NADPH:ferredoxin oxidoreductase to cytochrome P450 enzymes involved in steroid metabolism. We report here the expression of human mitochondrial ferredoxin in the yeast Saccharomyces cerevisiae. The full-length ferredoxin protein containing the ferredoxin mitochondrial leader sequence could not be stably expressed in S. cerevisiae, but a fusion protein consisting of the mature portion of ferredoxin linked to the mitochondrial leader sequence of the S. cerevisiae cytochrome c oxidase subunit Va protein (COX5a) could be stably expressed. The COX5a:ferredoxin fusion protein was targeted to the mitochondria as a preprotein and was cleaved at the normal processing site of the COX5a presequence during import into the matrix. Absorption spectra and electron transfer activity of the isolated fusion protein established that the [2Fe-2S] center was correctly assembled and incorporated into the recombinant ferredoxin in this heterologous system.  相似文献   

6.
A nuclear gene (QCR9) encoding the 7.3-kDa subunit 9 of the mitochondrial cytochrome bc1 complex from Saccharomyces cerevisiae has been isolated from a yeast genomic library by hybridization with a degenerate oligonucleotide corresponding to nine amino acids proximal to the N terminus of purified subunit 9. QCR9 includes a 195-base pair open reading frame capable of encoding a protein of 66 amino acids and having a predicted molecular weight of 7471. The N-terminal methionine of subunit 9 is removed posttranslationally because the N-terminal sequence of the purified protein begins with serine 2. The ATG triplet corresponding to the N-terminal methionine is separated from the open reading frame by an intron. The intron is 213 base pairs long and contains previously reported 5' donor, 3' acceptor, and TACTAAC sequences necessary for splicing. The splice junctions, as well as the 5' end of the message, were confirmed by isolation and sequencing of a cDNA copy of QCR9. In addition, the intron contains a nucleotide sequence in which 15 out of 18 nucleotides are identical with a sequence in the intron of COX4, the nuclear gene encoding cytochrome c oxidase subunit 4. The deduced amino acid sequence of the yeast subunit 9 is 39% identical with that of a protein of similar molecular weight from beef heart cytochrome bc1 complex. If conservative substitutions are allowed for, the two proteins are 56% similar. The predicted secondary structure of the 7.3-kDa protein revealed a single possible transmembrane helix, in which the amino acids conserved between beef heart and yeast are asymmetrically arranged along one face of the helix, implying that this domain of the protein is involved in a conserved interaction with another hydrophobic protein of the cytochrome bc1 complex. Two yeast strains, JDP1 and JDP2, were constructed in which QCR9 was deleted. Both strains grew very poorly, or not at all, on nonfermentable carbon sources and exhibited, at most, only 5% of wild-type ubiquinol-cytochrome c oxidoreductase activity. Optical spectra of mitochondrial membranes from the deletion strains revealed slightly reduced levels of cytochrome b. When JDP1 and JDP2 were complemented with a plasmid carrying QCR9, the resulting yeast grew normally on ethanol/glycerol and exhibited normal cytochrome c reductase activities and optical spectra. These results indicate that QCR9 encodes a 7.3-kDa subunit of the bc1 complex that is required for formation of a fully functional complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
From the amino acid sequence of yeast cytochrome c oxidase subunit VIII published previously (Power, S. D., Lochrie, M.A., Patterson, T.E., and Poyton, R.C. (1984) J. Biol. Chem. 259, 6571-6574), we have synthesized a pair of oligonucleotide probes and used them to identify COX8, its structural gene. By genomic Southern blot analysis and disruption of the COX8 chromosomal locus, we have shown that this gene is present in one copy per haploid genome and that its product, subunit VIII, is essential for maximal levels of cellular respiration and cytochrome c oxidase activity. Alignment of the amino acid sequence predicted from the DNA sequence of COX8 with the determined amino acid sequence of subunit VIII indicates that mature subunit VIII is derived from a larger precursor that extends from both the NH2 and COOH termini of the mature polypeptide. Thus, like many other nuclear coded mitochondrial proteins, subunit VIII is derived from a precursor which carries a leader peptide. In addition, this precursor, like that for yeast cytochrome c oxidase subunit VIIa, appears to carry a four-amino acid "trailer peptide" at its COOH terminus.  相似文献   

8.
The nuclear gene COX5 coding for subunit 5 of cytochrome oxidase has been cloned by transformation of the cox5-1 mutant aE4-238/AL1 with a library of yeast genomic DNA. The recombinant plasmid pG46/ST2 bearing a nuclear DNA insert of 1.17 kilobase pairs restores the ability of cox5 mutants to respire and to synthesize a wild type subunit 5. The COX5 gene has been sequenced and determined to code for a 153-amino acid long protein with a molecular weight of 17,121. The amino-terminal 20 residues comprise the signal peptide. The sequence starting from residue 21 matches the partial sequence reported for the mature subunit 5. The sequence of the subunit 5 gene indicates that the mature protein has a molecular weight of 14,858 which agrees with previous size estimates based on electrophoretic migration. The primary sequence and polarity profile of yeast subunit 5 establishes that it is homologous to subunit 4 of bovine cytochrome oxidase.  相似文献   

9.
Three pseudogenes for the nuclear-encoded subunit VIb of cytochrome c oxidase (COX) were isolated by screening a human genomic library with cloned human cDNA coding for COX subunit VIb. The nucleotide sequences of the pseudogenes, designated psi COX6b-1, psi COX6b-2 and psi COX6b-3, were determined. Pseudogene psi COX6b-1 bears all the hallmarks of a processed pseudogene and diverged from the parental gene after the divergence of man and cow. Alu repetitive elements were integrated into the structural sequences of the other two pseudogenes. Comparison with the human and bovine cDNA sequences encoding COX subunit VIb suggests that psi COX6b-2 and psi COX6b-3 were formed earlier in evolution than psi COX6b-1. Genomic Southern analysis indicated that a few more pseudogenes for COX subunit VIb are likely to be present in the human genome. Identical nt differences with respect to the human cDNA sequence in the pseudogenes provide some clues on the evolution of the ancestral gene coding for COX subunit VIb.  相似文献   

10.
The gene for yeast cytochrome c oxidase subunit V, COX5, has been isolated from a Saccharomyces cerevisiae DNA library by complementation of a cytochrome c oxidase subunit V mutant, JM28. One complementing plasmid, YEp13-511, with a DNA insert of 4.8 kilobase pairs, has been characterized in detail. This plasmid restores respiratory competency in JM28, results in increased cytochrome c oxidase activity and a new form of subunit V in JM28 mitochondria, and is capable of selecting mRNA for subunit V. These results indicate that YEp13-511 carries the COX5 gene and that the subunit V encoded by this plasmid gene is capable of entering the mitochondrion and assembling into a functional holocytochrome c oxidase.  相似文献   

11.
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.  相似文献   

12.
Cytochrome c oxidase subunit II (Cox2p) of Saccharomyces cerevisiae is synthesized within mitochondria as a precursor, pre-Cox2p. The 15-amino acid leader peptide is processed after export to the intermembrane space. Leader peptides are relatively unusual in mitochondrially coded proteins: indeed mammalian Cox2p lacks a leader peptide. We generated two deletions in the S. cerevisiae COX2 gene, removing either the leader peptide (cox2-20) or the leader peptide and processing site (cox2-21) without altering either the promoter or the mRNA-specific translational activation site. When inserted into mtDNA, both deletions substantially reduced the steady-state levels of Cox2p and caused a tight nonrespiratory phenotype. A respiring pseudorevertant of the cox2-20 mutant was heteroplasmic for the original mutant mtDNA and a ρ(-) mtDNA whose deletion fused the first 251 codons of the mitochondrial gene encoding cytochrome b to the cox2-20 sequence. The resulting fusion protein was processed to yield functional Cox2p. Thus, the presence of amino-terminal cytochrome b sequence bypassed the need for the pre-Cox2p leader peptide. We propose that the pre-Cox2p leader peptide contains a targeting signal necessary for membrane insertion, without which it remains in the matrix and is rapidly degraded.  相似文献   

13.
14.
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.  相似文献   

15.
16.
Disruption of the gene for subunit 6 of the yeast cytochrome bc1 complex (QCR6) causes a temperature-sensitive petite phenotype in contrast to deletion of the coding region of QCR6, which shows no growth defect. Mitochondria from the petite strain carrying the disruption allele were devoid of ubiquinol-cytochrome c oxidoreductase activity but retained cytochrome c oxidase and oligomycin-sensitive ATPase activities. Optical spectra of cytochromes in mitochondrial membranes from the petite strain lacked a cytochrome b absorption band and had a reduced amount of cytochrome c1. Analysis of mitochondrial translation products showed normal synthesis of cytochrome b. Western analysis of mitochondrial membranes from this disruption strain indicates core protein 1 of the cytochrome bc1 complex is present in normal amounts, while cytochrome c1, the Rieske iron-sulfur protein, subunit 6, and subunit 7 were absent or present in very low amounts. Taken together, these findings indicate a loss of assembly of the cytochrome bc1 complex. High copy suppressors of the disruption strain were selected. Two separate families of suppressors were found. The first contained QCR6. The second family consisted of overlapping clones of a second gene distinct from QCR6. These plasmids contained QCR9, the gene which codes for subunit 9 of the yeast cytochrome bc1 complex. Suppression of the QCR6 disruption strain by overexpression of QCR9 indicates a critical interaction between these two proteins in the assembly of the cytochrome bc1 complex.  相似文献   

17.
The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.  相似文献   

18.
A nuclear pet mutant of Saccharomyces cerevisiae that is defective in the structural gene for subunit V of cytochrome c oxidase has been identified and used to clone the subunit V gene (COX5) by complementation. This mutant, E4-238 [24], and its revertant, JM110, produce variant forms of subunit V. In comparison to the wild-type polypeptide (Mr = 12,500), the polypeptides from E4-238 and JM110 have apparent molecular weights of 9,500 and 13,500, respectively. These mutations directly alter the subunit V structural gene rather than a gene required for posttranslational processing or modification of subunit V because they are cis-acting in diploid cells; that is, both parental forms of subunit V are produced in heteroallelic diploids formed from crosses between the mutant, revertant, and wild type. Several plasmids containing the COX5 gene were isolated by transformation of JM28, a derivative of E4-238, with DNA from a yeast nuclear DNA library in the vector YEp13. One plasmid, YEp13-511, with a DNA insert of 4.8 kilobases, was characterized in detail. It restores respiratory competency and cytochrome oxidase activity in JM28, encodes a new form of subunit V that is functionally assembled into mitochondria, and is capable of selecting mRNA for subunit V. The availability of mutants altered in the structural gene for subunit V (COX5) and of the COX5 gene on a plasmid, together with the demonstration that plasmid-encoded subunit V is able to assemble into a functional holocytochrome c oxidase, enables molecular genetic studies of subunit V assembly into mitochondria and holocytochrome c oxidase.  相似文献   

19.
Cytochrome c oxidase biogenesis: new levels of regulation   总被引:1,自引:0,他引:1  
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.  相似文献   

20.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号