首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potent mutagenicity of 7,12-dihydroxymethylbenz[a]anthracene (DHBA) toward Salmonella typhimurium TA 98 in the presence of rat liver cytosol fortified with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) was completely retarded by the addition of glutathione (GSH). The reactive and intrinsically mutagenic metabolite, DHBA 7-sulfate, formed by hepatic cytosolic sulfotransferase disappeared from the incubation mixture by the addition of GSH. Non-mutagenic S-(12-hydroxymethylbenz[a]anthracen-7-yl)methylglutathione was isolated from the incubation mixture consisting of the hepatic cytosol, DHBA, PAPS, and GSH and proved to be formed by GSH S-transferase directly from DHBA 7-sulfate as an obligatory intermediate.  相似文献   

2.
Oxidation of low density lipoprotein (LDL) by glucose-derived radicals may play a role in the aetiology of atherosclerosis in diabetes. Salicylate was shown to scavenge certain radicals. In the present study, aspirin, salicylate and its metabolites 2,5- and 2, 3-dihydroxybenzoic acid (DHBA) were tested for their ability to impair LDL oxidation by glucose. Only the DHBA derivatives, when present during LDL modification, inhibited LDL oxidation and the increase in endothelial tissue factor synthesis induced by glucose oxidised LDL. The LDL glycation reaction was not affected by DHBA. The antioxidative action of DHBA may be attributed to free radical scavenging and/or chelation of transition metal ions catalysing glucose autoxidation.  相似文献   

3.
After elicitation, cell suspension cultures of Catharanthus roseus accumulate phenolic compounds. The major phenolic compound produced was isolated and identified as 2,3-dihydroxybenzoic acid (DHBA). The accumulation of this compound is a rapid response to the addition of elicitor; within 6 h after the addition of elicitor, DHBA concentration reached 6.3 mg/l cell suspension. DHBA was not detected in non-elicited cells. The formation of DHBA in elicited cells was correlated with the induction of the enzyme isochorismate synthase (ICS). Shoot cultures of C. roseus also presented a strong induction of ICS after elicitation. Due to its biological activity, DHBA could play a role in the defence mechanism of C. roseus.  相似文献   

4.
We examined the effect of imipramine (a tricyclic antidepressant drug) on hydroxyl radical (.OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) in extracellular fluid of rat striatum, using a microdialysis technique. Imipramine enhanced the formation of.OH trapped as 2,3-dihydroxybenzoic acid (DHBA) induced by MPP(+) (5 mM). Introduction of imipramine (0.1, 0.5 and 1.0 mM) dose-dependently increased the level of dopamine (DA) release. Concomitantly, imipramine enhanced DA efflux and the level of DHBA induced by MPP(+), as compared with MPP(+)-treated control. When corresponding experiments were performed with reserpinized rats, there were small increases in the levels of DA and nonsignificant increase in the formation of DHBA. When iron (II) was administered to imipramine (1 mM)-treated animals, a marked elevation of DHBA was observed, compared with MPP(+)-only treated animals. A positive linear correlation was observed between iron (II) and DHBA (R(2)=0.985) in the dialysate. These results indicate that imipramine enhances generation of.OH induced by MPP(+) during enhanced DA overflow.  相似文献   

5.
Helium at an ambient pressure of 68 at m with 0.2 atm of O(2) shortened by 1 to 1.5 h the lag phase for growth of Escherichia coli in minimal medium supplemented with 2 muliters of cell-free culture filtrate (CFF) per ml or with 1 muM 2,3-dihydroxybenzoylserine (DHBS), an iron chelator. The lag phase of cultures not exposed to helium could be shortened by use of supplements, but higher concentrations were required-10 to 30 muliters of CFF per ml or 10 to 50 muM DHBS. Strain AN 193 of E. coli, which requires the DHBS precursor 2,3-dihydroxybenzoic acid (DHBA), grew well in media with 10 muM DHBA when exposed to helium at 68 atm, whereas 100 muM DHBA was required for growth in unexposed cultures. In the presence of 100 muM DHBA plus 1.0 muM ethylenediaminetetraactic acid, growth was inhibited at 1 and 68 atm. Growth was restored, however, by the addition of 0.1 muM FeSO(4) at 68 atm and 1.0 muM FeSO(4) at 1 atm, but lag times were invariably shorter in the pressurized cultures. Hydrostatic pressures of 68 atm did not reduce the lag phase in the presence of CFF, DHBS, or DHBA. Our results suggest that 68 atm of helium pressure, but not hydrostatic pressure, elicited a more rapid transport of iron into the cells.  相似文献   

6.
Alkylresorcinols (ARs) are phenolic lipids present at high concentrations in the outer parts of rye and wheat kernels and have been proposed as biomarkers for intake of whole grain and bran products of these cereals. AR are absorbed in the small intestine and after hepatic metabolism two major metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), are excreted in urine either as such or as conjugates. Urine samples from nine individuals were incubated with different enzymes to assess type and extent of conjugates. In comparison with DHBA, which was mostly found in the free form, the less polar DHPPA was conjugated to a greater extent and the major conjugates were glucuronides. In this method, urine samples were hydrolyzed using β-glucuronidase from Helix pomatia and syringic acid was used as internal standard. Samples, silylated with BSTFA, were analyzed by GC–MS utilizing a BP-5 fused silica capillary column and single ion monitoring of molecular ions (m/z 370 [DHBA], m/z 398 [DHPPA]). Recoveries of DHBA and DHPPA were estimated to be 94% and 93%, respectively. The average intra-assay/inter-assay coefficients of variation were 4.9/5.7% for DHBA and 7.6/9.3% for DHPPA.  相似文献   

7.
This paper describes the application of a window diagram technique to optimize the four components of eluent (sodium acetate, sodium heptanesulfonate, acetonitrile and pH adjusted by monochloroacetic acid), for complete separation of five catecholamine compounds and the internal standard (3,4-dihydroxybenzylamine, DHBA). In addition, studies were performed to address the problem of the variable recovery of DHBA from dog plasma due to a time-dependent loss of DHBA. We found that this phenomenon can be prevented by pH adjustment prior to addition of DHBA, allowing development of an accurate high-performance liquid chromatographic assay for plasma catecholamines in dogs.  相似文献   

8.
Abstract: Free radicals have been implicated in the etiology of many neurodegenerative conditions. Yet, because these species are highly reactive and thus short-lived it has been difficult to test these hypotheses. We adapted a method in which hydroxyl radicals are trapped by salicylate in vivo, resulting in the stable and quantifiable products, 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA. After systemic (100 mg/kg i.p.) or intraventricular (4 µmol) administration of salicylate, the amount of DHBA in striatal tissue correlated with tissue levels of salicylate. After systemic salicylate, the ratio of total DHBA to salicylate in neostriatum was at least 10-fold higher than that observed after central salicylate. In addition, systemic salicylate resulted in considerably higher concentrations of 2,3- and 2,5-DHBA in plasma than in brain. Therefore, a large portion of the DHBA present in brain after systemic salicylate may have been formed in the periphery. A neurotoxic regimen of methamphetamine increased the concentration of DHBA in neostriatum after either central or systemic administration of salicylate. The increase in 2,3-DHBA after the central administration of salicylate was significant at 2 h, but not at 4 h, after the last dose of methamphetamine. These results suggest that (1) when assessing specific events in brain, it is preferable to administer salicylate centrally, and (2) neurotoxic doses of methamphetamine increase the hydroxyl radical content in brain in a time-dependent manner.  相似文献   

9.
Brain Hydroxyl Radical Generation in Acute Experimental Head Injury   总被引:6,自引:4,他引:2  
Abstract: The time course and intensity of brain hydroxyl radical (?OH) generation were examined in male CF-1 mice during the first hour after moderate or severe concussive head injury. Hydroxyl radical production was measured using the salicylate trapping method in which the production of 2,3- and/or 2,5-dihydroxybenzoic acid (DHBA) in brain 15 min after salicylate administration was used as an index of ?OH formation. In mice injured with a concussion of moderate severity as defined by the 1-h posttraumatic neurologic recovery (grip score), a 60% increase in 2,5-DHBA formation was observed by 1 min after injury compared with that observed in uninjured mice. The peak in DHBA formation occurred at 15 min after injury (+67.5%; p < 0.02, compared with uninjured). At 30 min, the increase in DHBA lost significance, indicating that the posttraumatic increase in brain ?OH formation is a transient phenomenon. In severely injured mice, the peak increase in DHBA (both 2,3- and 2,5-) was observed at 30 min after injury, but also fell off thereafter as with the moderate injury severity. Preinjury dosing of the mice with SKF-525A (50 mg/kg i.p.), an inhibitor of microsomal drug oxidations, did not blunt the posttraumatic increase in salicylate-derived 2,5-DHBA, thus showing that it is not due to increased metabolic hydroxylation. Neither injury nor SKF-525A administration affected the DHBA plasma levels. However, saline perfusion of the injured mice to remove the intravascular blood before brain removal eliminated the injury-induced increase in 2,5-DHBA, but did not affect the baseline levels seen in uninjured mice. This implies that the source of the increased DHBA in the injured mice is the microvasculature, probably the endothelium. The administration of the 21-aminosteroid lipid antioxidant, tirilazad mesylate, which possesses ?OH scavenging properties, also attenuated the posttraumatic increase in DHBA, further supporting that it reflects an increase in ?OH radical formation. These results are the first direct demonstration of the occurrence and time course of increased ?OH production in injured brain.  相似文献   

10.
Acinetobacter baumannii causes severe infections in compromised patients, who present an iron-limited environment that controls bacterial growth. This pathogen has responded to this restriction by expressing high-affinity iron acquisition systems including that mediated by the siderophore acinetobactin. Gene cloning, functional assays and biochemical tests showed that the A. baumannii genome contains a single functional copy of an entA ortholog. This gene, which is essential for the biosynthesis of the acinetobactin precursor 2,3-dihydroxybenzoic acid (DHBA), locates outside of the acinetobactin gene cluster, which otherwise harbors all genes needed for acinetobactin biosynthesis, export and transport. In silico analyses and genetic complementation tests showed that entA locates next to an entB ortholog, which codes for a putative protein that contains the isochorismatase lyase domain, which is needed for DHBA biosynthesis from isochorismic acid, but lacks the aryl carrier protein domain, which is needed for tethering activated DHBA and completion of siderophore biosynthesis. Thus, basF, which locates within the acinetobactin gene cluster, is the only fully functional entB ortholog present in ATCC 19606(T). The differences in amino acid length and sequences between these two EntB orthologs and the differences in the genetic context within which the entA and entB genes are found in different A. baumannii isolates indicate that they were acquired from different sources by horizontal transfer. Interestingly, the AYE strain proved to be a natural entA mutant capable of acquiring iron via an uncharacterized siderophore-mediated system, an observation that underlines the ability of different A. baumannii isolates to acquire iron using different systems. Finally, experimental infections using in vivo and ex vivo models demonstrate the role of DHBA and acinetobactin intermediates in the virulence of the ATCC 19606(T) cells, although to a lesser extent when compared to the responses obtained with bacteria producing and using fully matured acinetobactin to acquire iron.  相似文献   

11.
In order to understand the molecular mechanism of non-oxidative decarboxylation of aromatic acids observed in microbial systems, 2,3 dihydroxybenzoic acid (DHBA) decarboxylase from Aspergillus niger was purified to homogeneity by affinity chromatography. The enzyme (Mr 120 kDa) had four identical subunits (28 kDa each) and was specific for DHBA. It had a pH optimum of 5.2 and Km was 0.34 mM. The decarboxylation did not require any cofactors, nor did the enzyme had any pyruvoyl group at the active site. The carboxyl group and hydroxyl group in the ortho-position were required for activity. The preliminary spectroscopic properties of the enzyme are also reported.  相似文献   

12.
Azospirillum lipoferum M was found to produce catechol-type of siderophores under iron-starved conditions. Chemical characterization of siderophores revealed the presence of salicylic acid, 2,3-dihydroxybenzoic acid (DHBA), and 3,5-DHBA conjugated with threonine and lysine. Siderophore production was found to be maximum after 28 h of growth. In addition to their established role in iron transport, the siderophores exhibited antimicrobial activity against various bacterial and fungal isolates.  相似文献   

13.
P-coumaric acid (HCA), 2,4-dichlorophenol (DCP) and resorcionol acted as cofactors for IAA-oxidase isolated from young wheat plants. Ferulic acid (FA) and 3,4-dihydroxybenzoic acid (DHBA) induced a lag phase prior to IAA oxidation. HCA, FA (0.2-1 mg ml-1) and DCP (0.03-1 mg ml-1) strongly inhibited wheat coleoptile section growth. DHBA (0.01-1 mg ml-1) slightly stimulated it and resorcinol was without effect. HCA inhibited IAA-induced growth of coleoptile sections and FA stimulated it at low IAA levels and inhibited it at higher ones. DHBA, DCP and resorcinol did not affect IAA-induced growth of coleoptile sections.  相似文献   

14.
The present study examined the antioxidant effect of histidine, a singlet oxygen ((1)O(2)) scavenger, on para-nonylphenol (an environmental estrogen-like chemical)-enhanced hydroxyl radical (.OH) generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in extracellular fluid of rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl/min) was infused through a microdialysis probe to detect the generation of.OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Introduction of para-nonylphenol (10 microM) significantly enhanced MPP+ -induced.OH generation. Histidine (25 mM) decreased the para-nonylphenol-enhanced.OH formation. Although the level of MPP+ -induced.OH formation trapped as DHBA after para-nonylphenol treatment increased, para-nonylphenol failed to increase either the level of dopamine and DHBA formation in the reserpinized animals. These results indicate that para-nonylphenol and MPP+ -enhanced.OH generation was based on 1O(2) production, and histidine may have a preventive effect on para-nonylphenol and MPP+ -induced.OH generation in rat striatum.  相似文献   

15.
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.  相似文献   

16.
Alkylresorcinols (AR) are amphiphilic compounds present at high concentrations in the outer parts of wheat and rye kernels. Due to their specificity to whole grain and bran products of these cereals, AR and their metabolites have been proposed as biomarkers for intake of such foods. Two alkylresorcinol metabolites, 3,5-dihydroxybenzoic acid (DHBA) and 3-(3,5-dihydroxyphenyl)-1-propanoic acid (DHPPA), have previously been quantified in human urine using two different methodologies: high-performance liquid chromatography coupled to a coulometric electrode array detector (HPLC-CEAD) and gas chromatography in combination with mass spectrometry (GC-MS). In this study, these two methodologies were compared by analysing 114 urine samples from free-living Swedish subjects consuming their habitual diet. Data were evaluated by graphical investigation of difference-plots and statistical inference of agreement was assessed by weighted Deming regression analysis. The median DHBA concentrations were 11 μM (GC-MS) and 13 μM (HPLC-CEAD), respectively. Both difference-plot and regression analysis showed a small but statistically significant additive bias, with HPLC-CEAD resulting in a slightly higher DHBA concentration than GC-MS. The median concentration of DHPPA was 18 μM for both methods. Examination of the difference-plot of DHPPA did not indicate any systematic difference between the methods, but regression analysis showed small but statistically significant constant and proportional biases. The conclusion was that the two methodologies are equally suitable for analysis of alkylresorcinol metabolites in human urine and that any small systematic differences observed are most likely of limited practical importance.  相似文献   

17.
Polyphenolic compounds including a number of natural products such as resveratrol, curcumin, catechin derivatives, and nordihydroguaiaretic acid have effects on the assembly of Aβ fibrils and oligomers as well as on fibril morphology. Based on a lead structure obtained from a screen of a small molecule diversity library, simple benzoic acid derivatives distinguished by the number and position of hydroxyls on the aromatic ring displayed different abilities to dissociate preformed biotinyl-Aβ(1-42) oligomers. The 2,3-, 2,5-, and 3,4-dihydroxybenzoic acid (DHBA) isomers were active oligomer dissociators. The remaining DHBA isomers and the monohydroxy and unsubstituted benzoic acids were inactive and did not compete with the active compounds to block oligomer dissociation. None of the compounds blocked oligomer assembly, indicating that they do not interact with monomeric Aβ to shift the oligomer-monomer equilibrium. Dissociating activity was not associated with quinone redox cycling capacity of the compounds. Gallic acid (3,4,5-trihydroxybenzoic acid) stabilized biotinyl-Aβ(1-42) oligomers against intrinsic dissociation and blocked the effects of the active dissociators, independent of the concentration of dissociator. A model for the mechanism of action of the DHBA dissociators proposes that these compounds destabilize oligomer structure promoting progressive monomer dissociation rather than fissioning oligomers into smaller, but still macromolecular, species. Gallic acid blocks dissociation by stabilizing oligomers against this process.  相似文献   

18.
The concentration of glutamate as well as the hydroxylation of salicylate, as an index of hydroxyl free radical formation, has been determined in the abdominal aorta and heart of gerbils undergoing an ischemia/reperfusion insult (IRI) and compared to control sham-operated gerbils. The amount of glutamate and hydroxylated salicylate (dihydroxybenzoic acid, DHBA) was significantly increased in both the aorta and heart of IRI-treated gerbils as compared to the aorta and in the heart of sham-operated gerbils. Vitamin E (90 mg/kg at 24 and 1 h prior to an IRI) pretreatment prevented the increase of both glutamate and DHBA in both the aorta and heart of IRI-lesioned gerbils. The results suggest that increases in glutamate, perhaps due to the decreased activities of glutamine synthetase, are correlated with increased oxygen free radical formation during an ischemia/reperfusion insult to the heart.  相似文献   

19.
Leishmaniasis is the second-most dreaded parasitic disease in the modern world, behind malaria. The lack of effective vaccines demand improved chemotherapy along with the development of lead compounds and newer targets. We report here that the pentacyclic triterpenoid, dihydrobetulinic acid (DHBA), is a novel lead compound for antileishmanial therapy. It acts by targeting DNA topoisomerases. DNA topoisomerase I and II activity was studied using relaxation and decatenation assays. Mechanistic studies were based on the decreased mobility of enzyme-bound DNA compared with free DNA and the differential mobility of nicked and supercoiled monomers in 1% agarose gel. Pulsed field gradient gel electrophoresis, confocal microscopy, and transmission electron microscopy were performed to assess cytotoxicity of the compound and ultrastructural damage of the parasite. Apoptosis was studied by the isolation of DNA from DHBA-treated parasites and subsequent electrophoresis in 1% agarose gel. DHBA inhibits growth of Leishmania donovani promastigotes and amastigotes with an IC50 of 2.6 and 4.1 microM respectively. The compound is a dual inhibitor of DNA topoisomerases that fails to induce DNA cleavage and acts by preventing the formation of enzyme-DNA binary complex, ultimately inducing apoptosis. Treatment of infected golden hamsters with the compound markedly reduces (> 92%) parasitic burden, both in spleen and liver. Interestingly, the 17-decarboxylated analogue, dihydrolupeol, does not inhibit DNA topoisomerase I and II, has no effect on parasitic growth, and also fails to induce apoptosis. DHBA is a potent antileishmanial agent that induces apoptosis by primarily targeting DNA topoisomerases. Therefore it is a strong candidate for use in designing new antileishmanial drugs.  相似文献   

20.
Preischemic hyperglycemia is known to aggravate brain damage resulting from transient ischemia. In the present study, we explored whether this aggravation is preceded by an enhanced formation of reactive oxygen species (ROS) during the early reperfusion period. To that end, normo- and hyperglycemic rats were subjected to 15 min of forebrain ischemia and allowed recovery periods of 5, 15, and 60 min. Sodium salicylate was injected intraperitoneally in a dose of 100 mg/kg, and tissues were sampled during recirculation to allow analyses of salicylic acid (SA) and its hydroxylation products, 2,3- and 2,5-dihydroxybenzoate (DHBA). Tissue sampled from thalamus and caudoputamen in normoglycemic animals failed to show an increase in 2,3- or 2,5-DHBA after 5 and 15 min of recirculation. However, such an increase was observed in the neocortex after 60 min of recirculation, with a suggested increase in the hippocampus as well. Hyperglycemia had three effects. First, it increased 2,5-DHBA in the thalamus and caudoputamen to values exceeding normoglycemic ones after 15 min of recirculation. Second, it increased basal values of 2,5- and total DHBA in the neocortex. Third, it increased the 60-min values for 2,5- and total DHBA in the hippocampus. These results hint that, at least in part, hyperglycemia may aggravate damage by enhancing basal- and ischemia-triggered production of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号