首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
3.
4.
5.
Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin–carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall‐degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat‐stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.  相似文献   

6.
7.
8.
3‐Hydroxy‐3‐methylglutaryl‐coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild‐type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up‐regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10‐fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE‐S359A over OE‐wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA‐derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)‐derived α‐tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS‐OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up‐regulated. In OE‐S359A tomato fruits, increased squalene and phytosterol contents over OE‐wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE‐wtBjHMGS1 and OE‐S359A fruits, the up‐regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α‐tocopherol and carotenoid accumulation indicated cross‐talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health‐promoting squalene, phytosterols, α‐tocopherol and carotenoids in tomato, an edible fruit.  相似文献   

9.
10.
Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol‐O‐methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism modulates COMT activity and thus dopamine levels, and has been linked to substance use. COMT gene methylation, on the other hand, may affect expression and thus indirectly COMT activity. We investigated whether methylation of the COMT gene was associated with adolescents' substance use. Furthermore, we explored whether the COMT Val108/158Met polymorphism interacts with COMT gene methylation in association with substance use. In 463 adolescents (mean age = 16, 50.8% girls), substance use (cigarette smoking, alcohol and cannabis use) was assessed with self‐report questionnaires. From blood samples, COMT Val108/158Met genotype and methylation rates of membrane bound (MB) and soluble (S) COMT promoters were assessed. MB‐COMT promoter methylation was associated with non‐daily smoking [odds ratio (OR) = 1.82, P = 0.03], but not with daily smoking (OR = 1.20, P = 0.34), MB‐COMT promoter methylation was not associated with alcohol use. Adolescents with the Met/Met genotype and high rates of MB‐COMT promoter methylation were less likely to be high‐frequent cannabis users than adolescents with the Val/Val or Val/Met genotype. S‐COMT promoter methylation was not associated with substance use. These results indicate that there is an association between substance use and COMT gene methylation. Although this association is complex, combining genetic and epigenetic variation of the COMT gene may be helpful in further elucidating the influence of the dopamine system on substance use in adolescence.  相似文献   

11.
The cellulose synthase (CESA) membrane complex synthesizes microfibrils of cellulose that surround all plant cells. Cellulose is made of sugar (β,1‐4 glucan) and accessing the sugar in cellulose for biofuels is of critical importance to stem the use of fossil fuels and avoid competition with food crops and pristine lands associated with starch‐based biofuel production. The recalcitrance of cellulose to enzymatic conversion to a fermentable form of sugar is related to the degree of hydrogen bonding or crystallization of the glucan chain. Herein, we isolate the first viable low biomass‐crystallinity mutant by screening for altered cell wall structure using X‐ray scattering as well as screening for enzymatic conversion efficiency on a range of cell wall mutants in the model plant Arabidopsis thaliana (L.) Heynh. Through detailed analysis of the kinetics of bioconversion we identified a mutant that met both selection criteria. This mutant is ixr1‐2, which contains a mutation in a highly conserved consensus sequence among the C‐terminal transmembrane regions within CESA3. A 34% lower biomass crystallization index and 151% improvement in the efficiency of conversion from raw biomass to fermentable sugars was measured relative to that of wild type (Col‐0). Recognizing the inherent ambiguities with an insoluble complex substrate like cellulose and how little is still understood regarding the regulation of CESA we propose a general model for how to manipulate CESA enzymes to improve the recalcitrance of cellulose to enzymatic hydrolysis. This study also raises intriguing possibilities as to the functional importance of transmembrane anchoring in CESA complex and microfibril formation.  相似文献   

12.
Cell wall recalcitrance poses a major challenge on cellulosic biofuel production from feedstocks such as switchgrass (Panicum virgatum L.). As lignin is a known contributor of recalcitrance, transgenic switchgrass plants with altered lignin have been produced by downregulation of caffeic acid O‐methyltransferase (COMT). Field trials of COMT‐downregulated plants previously demonstrated improved ethanol conversion with no adverse agronomic effects. However, the rhizosphere impacts of altering lignin in plants are unknown. We hypothesized that changing plant lignin composition may affect residue degradation in soils, ultimately altering soil processes. The objective of this study was to evaluate effects of two independent lines of COMT‐downregulated switchgrass plants on soils in terms of chemistry, microbiology, and carbon cycling when grown in the field. Over the first two years of establishment, we observed no significant differences between transgenic and control plants in terms of soil pH or the total concentrations of 19 elements. An analysis of soil bacterial communities via high‐throughput 16S rRNA gene amplicon sequencing revealed no effects of transgenic plants on bacterial diversity, richness, or community composition. We also did not observe a change in the capacity for soil carbon storage: There was no significant effect on soil respiration or soil organic matter. After five years of establishment, δ13C of plant roots, leaves, and soils was measured and an isotopic mixing model used to estimate that 11.2 to 14.5% of soil carbon originated from switchgrass. Switchgrass‐contributed carbon was not significantly different between transgenic and control plants. Overall, our results indicate that over the short term (two and five years), lignin modification in switchgrass through manipulation of COMT expression does not have an adverse effect on soils in terms of total elemental composition, bacterial community structure and diversity, and capacity for carbon storage.  相似文献   

13.
14.
15.
Bioenergy production is driving modifications to native plant species for use as novel biofuel crops. Key aims are to increase crop growth rates and to enhance conversion efficiency by reducing biomass recalcitrance to digestion. However, selection for these biofuel‐valuable traits has potential to compromise plant defenses and alter interactions with pests and pathogens. Insect‐vectored plant viruses are of particular concern because perennial crops have potential to serve as virus reservoirs that influence regional disease dynamics. In this study, we examined relationships between growth rates and biomass recalcitrance in five switchgrass (Panicum virgatum) populations, ranging from near‐wildtype to highly selected cultivars, in a common garden trial. We measured biomass accumulation rates and assayed foliage for acid detergent lignin, neutral detergent fiber, in vitro neutral detergent fiber digestibility and in vitro true dry matter digestibility. We then evaluated relationships between these traits and susceptibility to a widely distributed group of aphid‐transmitted Poaceae viruses (Luteoviridae: Barley and cereal yellow dwarf viruses, B/CYDVs). Virus infection rates and prevalence were assayed with RT‐PCR in the common garden, in greenhouse inoculation trials, and in previously established switchgrass stands across a 300‐km transect in Michigan, USA. Aphid host preferences were quantified in a series of arena host choice tests with field‐grown foliage. Contrary to expectations, biomass accumulation rates and foliar digestibility were not strongly linked in switchgrass populations we examined, and largely represented two different trait axes. Natural B/CYDV prevalence in established switchgrass stands ranged from 0% to 28%. In experiments, susceptibility varied notably among switchgrass populations and was more strongly predicted by potential biomass accumulation rates than by foliar digestibility; highly selected, productive cultivars were most virus‐susceptible and most preferred by aphids. Evaluation and mitigation of virus susceptibility of new biofuel crops is recommended to avert possible unintended consequences of biofuel production on regional pathogen dynamics.  相似文献   

16.
Caffeic acid O‐methyltransferase (COMT), the lignin biosynthesis gene modified in many brown‐midrib high‐digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl‐to‐guaiacyl ratio was reduced by ~50%, the 5‐hydroxyguaiacyl (5‐OH‐G) unit incorporated into lignin at 10‐–15‐fold higher levels than normal, and the amount of p‐coumaric acid ester‐linked to cell walls was reduced by ~50%. No brown‐midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown‐midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.  相似文献   

17.
After invasion into intercellular spaces of tomato plants, the soil‐borne, plant‐pathogenic Ralstonia solanacearum strain OE1‐1 forms mushroom‐shaped biofilms (mushroom‐type biofilms, mBFs) on tomato cells, leading to its virulence. The strain OE1‐1 produces aryl‐furanone secondary metabolites, ralfuranones (A, B, J, K and L), dependent on the quorum sensing (QS) system, with methyl 3‐hydroxymyristate (3‐OH MAME) synthesized by PhcB as a QS signal. Ralfuranones are associated with the feedback loop of the QS system. A ralfuranone productivity‐deficient mutant (ΔralA) exhibited significantly reduced growth in intercellular spaces compared with strain OE1‐1, losing its virulence. To analyse the function of ralfuranones in mBF formation by OE1‐1 cells, we observed cell aggregates of R. solanacearum strains statically incubated in tomato apoplast fluids on filters under a scanning electron microscope. The ΔralA strain formed significantly fewer microcolonies and mBFs than strain OE1‐1. Supplementation of ralfuranones A, B, J and K, but not L, significantly enhanced the development of mBF formation by ΔralA. Furthermore, a phcB‐ and ralA‐deleted mutant (ΔphcB/ralA) exhibited less formation of mBFs than OE1‐1, although a QS‐deficient, phcB‐deleted mutant formed mBFs similar to OE1‐1. Supplementation with 3‐OH MAME significantly reduced the formation of mBFs by ΔphcB/ralA. The application of each ralfuranone significantly increased the formation of mBFs by ΔphcB/ralA supplied with 3‐OH MAME. Together, our findings indicate that ralfuranones are implicated not only in the development of mBFs by strain OE1‐1, but also in the suppression of QS‐mediated negative regulation of mBF formation.  相似文献   

18.
19.
The mechanism of colonization of intercellular spaces by the soil‐borne and vascular plant‐pathogenic bacterium Ralstonia solanacearum strain OE1‐1 after invasion into host plants remains unclear. To analyse the behaviour of OE1‐1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1‐1 were observed under a scanning electron microscope. OE1‐1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1‐1 cells produced mushroom‐type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom‐type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1‐1. Mutation of lecM encoding a lectin, RS‐IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom‐type biofilms and virulence on tomato plants. Together, our findings indicate that OE1‐1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS‐IIL may contribute to biofilm formation by OE1‐1, which is required for OE1‐1 virulence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号