首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological advantages of negative turgor pressure, Pt, in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative Pt in leaves. Biomechanical models of pressure‐volume (PV) curves predict that negative Pt does not change the linearity of PV curve plots of inverse balance pressure, PB, versus relative water loss, but it does predict changes in either the y‐intercept or the x‐intercept of the plots depending on where cell collapse occurs in the PB domain because of negative Pt. PV curve analysis of Robinia leaves revealed a shift in the x‐intercept (x‐axis is relative water loss) of PV curves, caused by negative Pt of palisade cells. The low x‐intercept of the PV curve was explained by the non‐collapse of palisade cells in Robinia in the PB domain. Non‐collapse means that Pt smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non‐collapsing living cells was as low as ?1.3 MPa and the relative volume of the non‐collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative Pt.  相似文献   

2.
Canny's compensating pressure theory for water transport (American Journal of Botany 85: 897–909) has evolved from the premise that cavitation pressures are only a few tenths of a megapascal negative (approximately −0.3 MPa). In contradiction, “vulnerability curves” indicate that xylem pressures can drop below −3 MPa in some species without causing a loss of hydraulic conductivity. Canny claims these curves do not measure the limits to negative pressure by cavitation, but rather the limits to the compensating tissue pressure that otherwise quickly refills cavitated conduits. Compensating pressure is derived from the turgor pressure of the living cells in the tissue. To test this claim, we compared vulnerability curves of Betula nigra stems given three treatments: (1) living control, (2) killed in a microwave oven, and (3) perfused with a −1.5 MPa (10% w/w) mannitol solution. According to Canny's theory, the microwaved and mannitol curves should show cavitation and loss of conductance beginning at approximately −0.3 MPa because in both cases, the turgor pressure would be eliminated or substantially reduced compared to controls. We also tested the refilling capability of nonstressed stems where compensating pressure would be in full operation and compared this with dead stems with no compensating pressure. According to Canny's interpretation of vulnerability curves, the living stems should refill within 5 min. Results failed to support the compensating tissue theory because (a) all vulnerability curves were identical, reaching a −1.5 MPa threshold before substantial loss of conductance occurred, and (b) killed or living stems had equally slow refilling rates showing no significant increase in conductivity after 30 min. In consequence, the cohesion theory remains the most parsimonious explanation of xylem sap ascent in plants.  相似文献   

3.
Abstract An artificial osmotic cell has been constructed using reverse osmosis membranes. The cell consisted of a thin film of an osmotic solution (thickness: 100 to 200 μm) containing a non-permeating solute and was bounded between the membrane and the front plate of a pressure transducer which continuously recorded cell turgor. The membrane was supported by metal grids to withstand positive and negative pressures (P). At maximum, negative pressures of up to –0.7 MPa (absolute) could be created within the film on short-term and pressures of up to –0.3 MPa could be maintained without cavitation for several hours. As with living plant cells, the application of osmotic solutions of a non-permeating solute resulted in monophasic relaxations of turgor pressure from which the hydraulic conductivity of the membrane (Lp) and the elastic modulus of the cell (?) could be estimated. The application of solutions with permeating solutes resulted in biphasic pressure relaxation curves (as for living cells) from which the permeability (Ps) and reflection (σs) coefficients could be evaluated for the given membrane. Lp, Ps, and σs were independent of P and did not change upon transition from the positive to the negative range of pressure. It is concluded that the artificial cell could be used to simulate certain transport properties of living cells and to study phenomena of negative pressure as they occur in the xylem and, perhaps, also in living cells of higher plants.  相似文献   

4.
Efflux of different solutes from leaf slices of Kalanchoëdaigremontiana and from slices of the onion bulb scale was reinvestigatedwith respect to (1) dependence on turgor, (2) selectivity, (3)integrity of protoplasts and cellular changes. In both materials efflux of solutes (electrolytes or sugars)is non-selective and strongly dependent on turgor. Treatmentof tissue slices with hypotonic solutions (below a criticalosmotic pressure) resulted in high leakage rates, an increasein free space and an increased number of damaged cells. Lowconcentrations of calcium did not prevent this loss of retentionand cell stability. Part of the surviving cells were found to have a strongly decreasedosmotic pressure of cell sap. Leakage did not occur simultaneouslyat all cells of the tissue slice. It can be concluded that effluxfrom parenchyma cells in hypotonic solutions results from irreversibleosmotic breakdown and reversible membrane defects both favouredby high turgor. Key words: Parenchyma cells, Allium cepa, Kalanchoé daigremontiana, Solute efflux, Viability, Permeability, Plasmoptysis  相似文献   

5.
K. H. Büchner  U. Zimmermann 《Planta》1982,154(4):318-325
Cells of Halicystis parvula, Acetabularia mediterranea, and Valonia utricularis were immobilized in a cross-linked alginate matrix (4–6% w/w) in order to simulate water-relation experiments in individual cells of higher plant tissues. The immobilization of these cells did not lead to an increase in the mechanical stability of the cell walls. This was demonstrated by measuring the volumetric elastic modulus of the cell wall and its dependence on turgor pressure with the aid of the non-miniaturized pressure probe. In immobilized cells, no changes in the absolute value of the elastic modulus of the cell wall could be detected for any given pressure. At the maximum turgor pressure at which non-immobilized cells normally burst (about 3–7 bar for V. utricularis; depending on cell size, 3 bar for A. mediterranea and 0.9 bar for H. parvula) reversible decreases in the pressure are observed which are succeeded by corresponding pressure increases. This obvervation indicates that coating the cells with the cross-linked matrix protects them from rapid water and turgor pressure loss. Turgor pressure relaxation processes in immobilized cells, which could be induced hydrostatically by means of the pressure probe, yielded accurate values for the half-times of water exchange and for the hydraulic conductivity of the cell membrane. The results demonstrate that the water transport equations derived for single cells in a large surrouding medium are valid for immobilized cells, so that any influence exerted by the unstirred layer which is caused by the presence of the cross-linked matrix can be ignored in the calculations. On the other hand, the evaluation of the half-times of water exchange and the hydraulic conductivity from turgor pressure relaxation processes, which have been induced osmotically, only yields correct values under certain circumstances. The model experiments presented here show, therefore, that the correct Lp-value for an individual cell in a higher plant tissue can probably only be obtained presently by using the pressure probe technique rather than the osmotic method. The results are also discussed in relation to the possible applications of immobilized cells and particularly of immobilized micro-organisms in catalytic reaction runs on an industrial scale.  相似文献   

6.
Summary Using a pressure probe, turgor pressure was directly determined in leaf-mesophyll cells and the giant epidermal bladder cells of stems, petioles and leaves of the halophilic plant Mesembryanthemum crystallinum. Experimental plants were grown under non-saline conditions. They displayed the photosynthetic characteristics typical of C3-plants when 10 weeks old and performed weak CAM when 16 weeks old. In 10 week old plants, the turgor pressure (P) of bladder cells of stems was 0.30 MPa; of bladder cells of petioles 0.19 MPa, and of bladder cells of leaves 0.04 MPa. In bladder cells from leaves of 16 week old plants, marked changes in turgor pressure were observed during day/night cycles. Maximum turgor occurred at noon and was paralleled by a decrease in the osmotic pressure of the bladder cell sap. Similar changes in the cell water relations were observed in plants in which traspirational water loss was prevented by high ambient relative humidity. Turgor pressure of mesophyll cells also increased during day-time showing macimum values in the early morning. No such changes in turgor pressure and osmotic pressure were observed in bladder and mesophyll cells of the 10 week old plants not showing the diurnal acid fluctuation typical of CAMAbbreviations CAM crassulacean acid metabolism - V volume of the cells (mm3) - P turgor pressure (MPa) - volumetric elastic modulus (MPa) - i osmotic pressure of the cell sap (MPa) - T 1/2 half-time of water exchange (s) - Lp hydraulic conductivity of the cell membrane (m·s-1·MPa-1) - A surface area of cells (mm2) - P pressure changes (MPa) - V volume changes (mm3) - nocturanal nighttime - diurnal daytime  相似文献   

7.
The aim of the present study was to test the accuracy of the pressure-chamber technique as a method for estimating leaf-cell turgor pressures. To this end, pressure-probe measurements of cell turgor pressure (Pcell) were made on mesophyll cells of intact, attached leaves of Kalanchoë daigremontiana. Immediately following these measurements, leaves were excised and placed in a pressure chamber for the determination of balance pressure (Pbal). Cell-sap osmotic pressure (?cell) and xylem-sap osmotic pressure (?xyl) were also measured, and an average cell turgor pressure calculated as Pcell=?cell–?xylPbal. The apparent value of Pbal was positively correlated with the rate of increase of chamber pressure, and there was also a time-dependent increase associated with water loss. On expressing sap from the xylem, ?xyl fell to a plateau value that was positively correlated with ?cell. Correcting for these effects yielded estimates of Pbal and ?xyl at the time of leaf excision. On average, the values of Pcell obtained with the two techniques agreed to within ±002 MPa (errors are approximate 95% confidence limits). If ?xyl were ignored, however, the calculated turgor pressures would exceed the measured values by an average of 0.074 ± 0.012MPa, or 48% at the mean measured pressure of 0.155 MPa. We conclude that the pressure-chamber technique allows a good estimate to be made of turgor pressure in mesophyll cells of K. daigremontiana, provided that ?xyl is included in the determination. The 1:1 relationship between the measured and calculated turgor pressures also implies that the weighted-average reflection coefficient for the mesophyll cell membranes is close to unity.  相似文献   

8.
Isolated internodes of Chara corallina and Nitella flexilis have been used to determine the concentration of one passively permeating solute in the presence of non-permeating solutes. The technique was based on the fact that the shape of the peaks of the biphasic responses of cell turgor (as measured in a conventional way using the cell pressure probe) depended on the concentration and composition of the solution and on the permeability and reflection coefficients of the solutes. Peak sizes were proportional to the concentration of the permeating solute applied to the cell. Thus, using the selective properties of the cell membrane as the sensing element and changes of turgor pressure as the physical signal, plant cells have been used as a new type of biosensor based on osmotic principles. Upon applying osmotic solutions, the responses of cell turgor (P) exactly followed the P(t) curves predicted from the theory based on the linear force/flow relations of irreversible thermodynamics. The complete agreement between theory and experiment was demonstrated by comparing measured curves with those obtained by either numerically solving the differential equations for volume (water) and solute flow or by using an explicit solution of the equations. The explicit solution neglected the solvent drag which was shown to be negligible to a very good approximation. Different kinds of local beers (regular and de-alcoholized) were used as test solutions to apply the system for measuring concentrations of ethanol. The results showed a very good agreement between alcohol concentrations measured by the sensor technique and those obtained from conventional techniques (enzymatic determination using alcohol dehydrogenase or from measurement of the density and refraction index of beer). However, with beer as the test solution, the characean internodes did show irreversible changes of the transport properties of the membranes leading to a shift in the responses when cells were treated for longer than 1 h with diluted beer. The accuracy and sensitivity of the osmotic biosensor technique as well as its possible applications are discussed.  相似文献   

9.
Turgor pressure in plant cells is involved in many important processes. Stable and normal turgor pressure is required for healthy growth of a plant, and changes in turgor pressure are indicative of changes taking place within the plant tissue. The ability to quantify the turgor pressure of plant cells in vivo would provide opportunities to understand better the process of pressure regulation within plants, especially when plant stress is considered, and to understand the role of turgor pressure in cellular signaling. Current experimental methods do not separate the influence of the turgor pressure from the effects associated with deformation of the cell wall when estimates of turgor pressure are made. In this paper, nanoindentation measurements are combined with finite element simulations to determine the turgor pressure of cells in vivo while explicitly separating the cell‐wall properties from the turgor pressure effects. Quasi‐static cyclic tests with variable depth form the basis of the measurements, while relaxation tests at low depth are used to determine the viscoelastic material properties of the cell wall. Turgor pressure is quantified using measurements on Arabidopsis thaliana under three pressure states (control, turgid and plasmolyzed) and at various stages of plant development. These measurements are performed on cells in vivo without causing damage to the cells, such that pressure changes may be studied for a variety of conditions to provide new insights into the biological response to plant stress conditions.  相似文献   

10.
Segmental analysis of the laminar pulvinus of Phaseolus vulgaris L. showed that its phototropic curvature is accompanied by efflux of inorganic ions and water from its contracting sector and a comparable influx into its expanding one. All the major ions, except Na+, contributed to this transport, suggesting that the response to light involves changes in the driving force, or conductivity of a wide range of solutes. During the curvature, K+ and CI? made the greatest and equivalent contributions to efflux, but only Cl? exhibited a matching influx into the expanding sector, while K+ influx was much less. Use of the cell pressure probe showed that, as the laminar angle of elevation changed between ?40° to +40°, turgor pressure in the expanding motor cells increased by 0.48 MPa and decreased in the contracting cells by 0.32 MPa. Picoliter osmometry of single-cell samples showed that during this movement vacuolar osmotic pressure remained constant. Thus, changes in turgor pressure resulted from changes in apoplastic, rather than the protoplastic osmotic pressure. Volumetric modulus of elasticity of pulvinar motor cells is very low, showing that their walls are very elastic. These properties increase the effectiveness of converting osmotic work into the large-scale, reversible volume changes responsible for leaf movements.  相似文献   

11.
Abstract. A modification to the pressure probe is described which allows very rapid extraction of sap samples from single higher plant cells. The performance of this rapid-sampling probe was assessed and compared with the unmodified probe for cells of both wheat and Tradescantia. Under some conditions, the unmodified probe operated too slowly to avoid dilution of cell sap during the extraction process. This led to values for apparent sample osmotic pressures that were below the turgor pressures for the same cells. The problem was particularly acute in young wheatleaf epidermal cells which are small, elongate and have high turgor pressure. These exhibited rapid water influx when their turgor was depressed during the sampling of their contents (half-time for pressure recovery in wheat cells was less than 1 s while in Tradescantia cells it was 3–5 s). Dilution during sampling was apparently negligible when the rapid sampling probe was used. The study was complemented by a simple model of the way cells dilute during sampling. Quantitative predictions of the model were consistent with our observed findings. The model is used to assess the major factors which determine a cell's susceptibility to dilution during sampling.  相似文献   

12.
Abstract. Radial and axial turgor pressure profiles were measured with the pressure probe in untreated and salt-treated intact roots of Mesembryanthemum crystallinum. The microcapillary of the pressure probe was inserted step-wise into the root tissue 5, 25 and 50 mm away from the root cap. For evaluation of the data, only those recordings on a given root were used in which four discontinuous increases in turgor pressure occurred. These four turgor pressure increases could be related to the rhizodermal cells and to the cells in the three cortical layers. The measurements showed that a radial turgor pressure gradient of the same magnitude (directed from the third cortical layer to the external medium) existed along the root axis. The magnitude of this turgor pressure gradient decreased with increasing salinity (up to 400 mol m-3 NaCl) in the growth medium. Addition of 10 mol m-3 CaCl2 to the 400 mol m-3 NaCl medium partly reduced the salt-induced decrease in turgor pressure, but only in cells 25–50 mm away from the root tip. Combined with this effect, a small axial turgor pressure gradient was generated, therefore, in the cortex layers which was directed to the root tip. Measurements of the volumetric elastic modulus, ?, of the wall of the individual cells showed that the presence of salt considerably reduced the magnitude of this parameter and that addition of Ca2+ to the strongly saline medium partially diminished this decrease. This effect was strongest in cells 50 mm away from the root tip. The magnitude of ? of rhizodermal and cortical cells increased along the root axis both in untreated and in salt-treated roots. The ? value was significantly smaller for rhizodermal cells compared to the cortical cells, with the exception of cells 50 mm from the tip. In this tissue, rhizodermal and cortical cells exhibited nearly the same values. The decrease of the ?-values with salt and the increase along the root axis under the various growth conditions could be correlated with corresponding changes in cell volume. Diurnal changes in turgor pressure could not be detected in the individual root cells, with the notable exception of the rhizodermal and cortical cells located in the region 50 mm away from the root tip of the control plants. In these cells, an increase in turgor pressure was observed during the morning hours. Determination of the average osmotic pressure in tissue sections along the roots of control and salt-treated plants revealed that at 400 mol m-3 NaCl the osmotic pressure gradient between the tissue and the medium is exo-directed, provided that the water is not (partly) immobilized.  相似文献   

13.
Abstract. Pressure—volume (P—V) curves were generated on roots and shoots of coastal Douglas fir [ Pseudotsuga menziesii (Mirb.) Franco] seedlings using two procedures. In the first (Method A), samples were dehydrated inside a pressure chamber. Exuded stem sap was collected and weighed at successive pressure increases to derive the P—V curve. In the second method (Method B). excised samples were allowed to dry outside the pressure chamber by evapotranspiration. They were weighed periodically to determine sap loss and their corresponding balance pressures were determined in a pressure chamber in order to derive the P—V curve.
Estimates of volume averaged osmotic potential at full turgor and water potential at zero turgor which were derived graphically from the P—V curves, were different for each method. In general, estimates were more negative in Method A, by as much as 1.5 MPa in one case. Also, Method B did not record an osmotic adjustment in seedlings which were subjected to severe water stress while Method A did.  相似文献   

14.
The feasibility of two hypothetical mechanisms for the stomatal response to humidity was evaluated by identifying theoretical constraints on these mechanisms and by analysing timecourses of stomatal aperture following a step change in humidity. The two hypothetical mechanisms, which allow guard cell turgor pressure to overcome the epidermal mechanical advantage, are: (1) active regulation of guard cell osmotic pressure, requiring no hydraulic disequilibrium between guard and epidermal cells, and (2) a substantial hydraulic resistance between guard and epidermal cells, resulting in hydraulic disequilibrium between them. Numerical simulations of the system are made possible by recently published empirical relationships between guard cell pressure and volume and between stomatal aperture, guard cell turgor pressure, and epidermal cell turgor pressure; these data allow the hypothetical control variables to be inferred from stomatal aperture and evaporative demand, given physical assumptions that characterize either hypothesis. We show that hypothesis (1) predicts that steady‐state πg is monotonically related to transpiration rate, whereas hypothesis (2) suggests that the relationship between transpiration rate and the steady‐state guard to epidermal cell hydraulic resistance may be either positive or negative, and that this resistance must change substantially during the transient phase of the stomatal response to humidity.  相似文献   

15.
Abscisic acid (ABA) was shown to influence turgor pressure and growth in wheat (Triticum aestivum L.) roots. At a concentrations of 25 mmol·m-3, ABA increased the turgor pressure of cells located within 1 cm of the tip by up to 450 kPa. At 4 to 5 cm from the root tip this concentration of ABA reduced the turgor pressure of peripheral cells (epidermis and the first few cortical cell layers) to zero or close to zero while that of the inner cells was increased. Increases in sap osmolality were dependent on the concentration of ABA and the effect saturated at 5 mmol·m-3 ABA. The increase in osmolality took about 4 h and was partly the result of reducing-sugar accumulation. Levels of inorganic cations were not affected by ABA. Root growth was inhibited at ABA concentrations that caused a turgor-pressure increase. The results show that while ABA can affect root cell turgor pressures, this effect does not result in increased root growth.Abbreviation ABA abscisic acid  相似文献   

16.
The osmotic pressure of the cell sap of stalk storage parenchyma of sugarcane (Saccharum spp. hybrids) increases by an order of magnitude during ontogeny to reach molar concentrations of sucrose at maturity. Stalk parenchyma cells must either experience very high turgor at maturation or have an ability to regulate turgor. We tested this hypothesis by using pressure probe techniques to quantify parameters of cell and tissue water relations of sugarcane storage parenchyma during ontogeny. The largest developmental change was in the volumetric elastic modulus, which increased from 6 bars in immature tissue to 43 bars in mature tissue. Turgor was maintained relatively low during sucrose accumulation by the partitioning of solutes between the cell and wall compartments. Membrane hydraulic conductivity decreased from about 12 × 10−7 centimeters per second per bar down to 4.4 × 10−7 centimeters per second per bar. The 2.7-fold decrease in membrane hydraulic conductivity during tissue maturation was accompanied by a 7.8-fold increase in wall elasticity. Integration of the cell wall and membrane properties appears to be by the opposing effects of turgor on hydraulic conductivity and elastic modulus. The changes in these properties during development of sugarcane stalk tissue may be a way for parenchyma cells to develop a capacity for expansive growth and still serve as a strong sink for storing high concentrations of sucrose.  相似文献   

17.
Summary Long-term xylem pressure measurements were performed on the lianaTetrastigma voinierianum (grown in a tropical greenhouse) between heights of 1 m and 9.5 m during the summer and autumn seasons with the xylem pressure probe. Simultaneously, the light intensity, the temperature, and the relative humidity were recorded at the measuring points. Parallel to the xylem pressure measurements, the diurnal changes in the cell turgor and the osmotic pressure of leaf cells at heights of 1 m and 5 m (partly also at a height of 9.5 m) were recorded. The results showed that tensions (and height-varying tension gradients) developed during the day time in the vessels mainly due to an increase in the local light intensity (at a maximum 0.4 MPa). The decrease of the local xylem pressure from positive, subatmospheric or slightly above-atmospheric values (established during the night) to negative values after daybreak was associated with an almost 1 1 decrease in the cell turgor pressure of the mesophyll cells (on average from about 0.4 to 0.5 MPa down to 0.08 MPa). Similarly, in the afternoon the increase of the xylem pressure towards more positive values correlated with an increase in the cell turgor pressure (ratio of about 1 1). The cell osmotic pressure remained nearly constant during the day and was about 0.75–0.85 MPa between 1 m and 9.5 m (within the limits of accuracy). These findings indicate that the turgor pressure primarily determines the corresponding pressure in the vessels (and vice versa) due to the tight hydraulic connection and thus due to the water equilibrium between both compartments. An increase in the transpiration rate (due to an increase in light intensity) results in very rapid establishment of a new equilibrium state by an equivalent decrease in the xylem and cell turgor pressure. From the xylem, cell turgor, and cell osmotic pressure data the osmotic pressure (or more accurately the water activity) of the xylem sap was calculated to be about 0.35–0.45 MPa; this value was apparently not subject to diurnal changes. Considering that the xylem pressure is determined by the turgor pressure (and vice versa), the xylem pressure of the liana could not drop to — in agreement with the experimental results — less than -0.4 MPa, because this pressure corresponds to zero turgor pressure.  相似文献   

18.
The changes in turgor pressure that accompany the mobilisation of sucrose and accumulation of salts by excised disks of storage-root tissue of red beet (Beta vulgaris L.) have been investigated. Disks were washed in solutions containing mannitol until all of their sucrose had disappeared and then were transferred to solutions containing 5 mol·m-3 KCl+5 mol·m-3 NaCl in addition to the mannitol. Changes in solute contents, osmotic pressure and turgor pressure (measured with a pressure probe) were followed. As sucrose disappeared from the tissue, reducing sugars were accumulated. For disks in 200 mol·m-3 mannitol, the final reducing-sugar concentration equalled the initial sucrose concentration so there was no change in osmotic pressure or turgor pressure. At lower mannitol concentrations, there was a decrease in tissue osmotic pressure which was caused by a turgor-driven leakage of solutes. At concentrations of mannitol greater than 200 mol·m-3, osmotic pressure and turgor pressure increased because reducing-sugar accumulation exceeded the initial sucrose concentration. When salts were provided they were absorbed by the tissue and reducing-sugar concentrations fell. This indicated that salts were replacing sugars in the vacuole and releasing them for metabolism. The changes in salf and sugar concentrations were not equal because there was an increase in osmotic pressure and turgor pressure. The amount of salt absorbed was not affected by the external mannitol concentration, indicating that turgor pressure did not affect this process. The implications of the results for the control of turgor pressure during the mobilisation of vacuolar sucrose are discussed.To whom correspondence should be addressed.  相似文献   

19.
The aim of the present study was to quantify osmotic pressuresdirectly in the translocation pathway, from leaf to growingroot tip, in order to understand the forces driving solutesfrom a source to a sink. Solutes move through the translocationpathway down an osmotically derived turgor gradient. Accordinglyaphid stylectomy and single cell sampling techniques have beencombined to examine the osmotic pressure of root phloem andgrowing root cells. Sieve tube sap was obtained from shootsand, for the first time, roots of barley seedlings using aphidstylectomy. Vacuolar sap was also obtained from a variety ofcells in leaf and root tissues using single cell sampling methods.Osmotic pressure of sieve tube sap from roots and shoots wasmeasured at high temporal resolution (within min) and over longperiods of time (up to 24 h). Osmotic pressure did not changesignificantly in the minutes immediately following excision,suggesting that confidence can be placed in the assumption thatstylet exudate is representative of sieve tube sap in vivo.There were no differences in the osmotic pressure of sieve tubesap from shoots (1.240.26 MPa, n = 10) or roots (1.420.15MPa, n = 13). However, osmotic pressure of sap from root corticalcells (0.710.09, n = 12) was about 0.7 MPa lower than thatof the sieve elements from roots, this difference may be maintainedby consumption of incoming solutes at the root tip. Resultsare discussed in the context of pressure driven flow in thephloem and symplastic contact between root tip cells and sievetube. It is hoped that the approach described here will provideimportant insights into the nature of the relationship betweenroot cell extension and assimilate supply through the phloem. Key words: Phloem, sieve tube, aphid, root, barley, osmotic pressure, translocation  相似文献   

20.
The turgor pressure and water relation parameters were determined in single photoautotrophically grown suspension cells and in individual cells of intact leaves of Chenopodium rubrum using the miniaturized pressure probe. The stationary turgor pressure in suspension-cultured cells was in the range of betwen 3 and 5 bar. From the turgor pressure relaxation process, induced either hydrostatically (by means of the pressure probe) or osmotically, the halftime of water exchange was estimated to be 20±10 s. No polarity was observed for both ex- and endosmotic water flow. The volumetric elastic modulus, , determined from measurements of turgor pressure changes, and the corresponding changes in the fractional cell volume was determined to be in the range of between 20 and 50 bar. increases with increasing turgor pressure as observed for other higher plant and algal cells. The hydraulic conductivity, Lp, is calculated to be about 0,5–2·10–6 cm s–1 bar–1. Similar results were obtained for individual leaf cells of Ch. rubrum. Suspension cells immobilized in a cross-linked matrix of alginate (6 to 8% w/w) revealed the same values for the half-time of water exchange and for the hydraulic conductivity, Lp, provided that the turgor pressure relaxation process was generated hydrostatically by means of the pressure probe. Thus, it can be concluded that the unstirred layer from the immobilized matrix has no effect on the calculation of Lp from the turgor pressure relaxation process, using the water transport equation derived for a single cell surrounded by a large external volume. By analogy, this also holds true for Lp-values derived from turgor pressure changes generated by the pressure probe in a single cell within the leaf tissue. The fair similarity between the Lp-values measured in mesophyll cells in situ and mesophyll-like suspension cells suggests that the water transport relations of a cell within a leaf are not fundamentally different from those measured in a single cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号