首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
Soil fertilization is a common practice in modern agriculture, undertaken to prevent nutrient deficiency in crops. However, fertilization is costly and causes environmental pollution. The cultivation of plants that tolerate low nutrient supplies may circumvent this problem. Here, we report the generation of Arabidopsis thaliana plants that tolerate boron (B)-deficient conditions due to the overexpression of BOR1, an efflux B transporter that is required for efficient xylem loading of B. In several independently generated transgenic plants expressing BOR1 or BOR1-GFP under the control of the cauliflower mosaic virus 35S RNA promoter, root-to-shoot translocation of B was enhanced and shoot growth was greater under B-limiting conditions compared with wild-type plants. In addition, the transgenic plants showed increased translocation of B, especially to the shoot apex, and set seed normally under B-limiting conditions, under which wild-type plants failed to set seed. This study therefore reports plants that show improved seed yields compared with wild-type under nutrient-deficient conditions as a result of increased production of an essential mineral nutrient transporter.  相似文献   

4.
We reported earlier that boron stimulates hypocotyl growth in several Arabidopsis ecotypes but not in the boron-deficient mutant bor1-1. Others have shown that boron influences the metabolism and transport of the plant hormone auxin. We investigated how boron, in interaction with light, influences Arabidopsis hypocotyl growth responses to the exogenous auxins 1-NAA, 2,4-D and IAA. In either light condition, 1-NAA similarly inhibited hypocotyl growth in bor1-1 and the corresponding WT (Col-0), while in both genotypes, boron did not essentially affect the extent of the inhibition. Whatever the light conditions and in the absence of boron, 2,4-D inhibited hypocotyl elongation in WT, while in BL seedlings, high responsiveness to 2,4-D vanished when boron was added to the culture medium. Hypocotyl of bor1-1 seedlings in all boron concentrations tested and grown in the dark or RL responded to the auxin similar to WT plants. In BL, the mutant hypocotyls retained full sensitivity to 2,4-D at 0.1 mM H3BO3 but lost that sensitivity by 2 mM. In both genotypes tested, in the dark or RL, IAA inhibited hypocotyl growth. Conversely, IAA stimulated hypocotyl elongation in both genotypes developed in BL at 0.1 mM H3BO3. That stimulation disappeared when the boron supply increased to 2 mM. Our results suggest that specifically in BL, boron reduces hypocotyl responsiveness to auxins 2,4-D or IAA via the functional transporter BOR1. Our results lead to a discussion of how BL and BOR1 influence the mechanisms of auxin transport into and out of the cell.  相似文献   

5.
Carotenoid cleavage dioxygenases (CCDs) are involved in the production of diverse apocarotenoids including phytohormones, the visual molecules and the aromatic volatile compounds derived from carotenoids. Here, we examined the spatial expression of four of the CCD genes (AtCcd1, 4, 7 and 8) among the nine members of this family in Arabidopsis by RT-PCR. We found that the AtCcd7 gene showed strong expression in seeds. However, the promoter activity of the 1,867-bp 5′-upstream region of this gene exhibited a vascular specificity at all developmental stages throughout the transgenic Arabidopsis plants tested. The strength of the AtCcd7 promoter was also found to be lower than that of the 35S promoter by about 60%. The whole body expression of the β-glucuronidase (GUS) reporter gene driven by the AtCcd7 promoter in Arabidopsis plants was confirmed in different organs by RT-PCR and GUS enzymatic assays. Histochemical GUS staining further revealed that the AtCcd7 promoter has utility in limiting the expression of target genes to the vascular tissues in all plant organs such as the leaf, stem, root, flower and seed.  相似文献   

6.
Boron (B) is an essential plant micronutrient. Two major B-transport proteins have been recently identified and partially characterized: BOR1, a high-affinity B efflux transporter involved in xylem loading, and NIP5;1, a plasma-membrane boric-acid channel involved in B uptake. To date, studies of these B transporters have investigated their expression individually (mainly as mRNA), and only in response to variation in B availability (mostly B deficiency); the influence of other factors, such as plant resource status, has not been studied. To address this, we grew geranium (Pelargonium × hortorum cv. Maverick White) plants under ambient or elevated CO2 concentration, different sub-saturating irradiances, and different B availability. For comparison we also grew three other species (Arabidopsis thaliana, Azolla caroliniana, and Hordeum vulgare) under broad range of B supply. Relative accumulation of BOR1 and NIP5;1 proteins were measured using protein-specific antibodies and Western blotting or ELISA. Elevated CO2 significantly increased content of NIP5;1, while increases in irradiance increased BOR1 content, but decreased NIP5;1 content. Across species, content of both transporters often decreased with increasing B availability, but sometimes remained unchanged or even increased, depending on CO2, irradiance, species, or transporter. Content of BOR1 and NIP5;1 was correlated with root proteins, B content, and sugar content (for high CO2 only), as well as B uptake, but CO2 and irradiance often affected these relationships. Thus, relative accumulation of BOR1 and NIP5;1 is influenced not only by B content, as expected, but by other environmental factors as well.  相似文献   

7.
  • Sugar beet (Beta vulgaris L.) is one of the most important sugar‐producing plants worldwide and provides about one third of the sugar consumed by humans. Here we report on molecular characterisation of the BvSUT1 gene and on the functional characterisation of the encoded transporter.
  • In contrast to the recently identified tonoplast‐localised sucrose transporter BvTST2.1 from sugar beet taproots, which evolved within the monosaccharide transporter (MST) superfamily, BvSUT1 represents a classical sucrose transporter and is a typical member of the disaccharide transporter (DST) superfamily.
  • Transgenic Arabidopsis plants expressing the β‐GLUCURONIDASE (GUS) reporter gene under control of the BvSUT1‐promoter showed GUS histochemical staining of their phloem; an anti‐BvSUT1‐antiserum identified the BvSUT1 transporter specifically in phloem companion cells. After expression of BvSUT1 cDNA in bakers’ yeasts (Saccharomyces cerevisiae) uptake characteristics of the BvSUT1 protein were studied. Moreover, the sugar beet transporter was characterised as a proton‐coupled sucrose symporter in Xenopus laevis oocytes.
  • Our findings indicate that BvSUT1 is the sucrose transporter that is responsible for loading of sucrose into the phloem of sugar beet source leaves delivering sucrose to the storage tissue in sugar beet taproot sinks.
  相似文献   

8.
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi‐arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild‐type plants upon B‐toxicity treatment. The Arabidopsis ABA‐deficient nced3‐2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild‐type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild‐type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3‐2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild‐type and nced3‐2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.  相似文献   

9.
During the transition to the reproductive phase, the shoot apical meristem switches from the developmental program that generates vegetative organs to instead produce flowers. In this study, we examined the genetic interactions of FLOWERING LOCUS T (FT)/TWIN SISTER OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) in the determination of inflorescence meristem identity in Arabidopsis thaliana. The ft‐10 tsf‐1 mutants produced a compact inflorescence surrounded by serrated leaves (hyper‐vegetative shoot) at the early bolting stage, as did plants overexpressing TFL1. Plants overexpressing FT or TSF (or both FT and TFL1) generated a terminal flower, as did tfl1‐20 mutants. The terminal flower formed in tfl1‐20 mutants converted to a hyper‐vegetative shoot in ft‐10 tsf‐1 mutants. Grafting ft‐10 tsf‐1 or ft‐10 tsf‐1 tfl1‐20 mutant scions to 35S::FT rootstock plants produced a normal inflorescence and a terminal flower in the scion plants, respectively, although both scions showed similar early flowering. Misexpression of FT in the vasculature and in the shoot apex in wild‐type plants generated a normal inflorescence and a terminal flower, respectively. By contrast, in ft‐10 tsf‐1 mutants the vasculature‐specific misexpression of FT converted the hyper‐vegetative shoot to a normal inflorescence, and in the ft‐10 tsf‐1 tfl1‐20 mutants converted the shoot to a terminal flower. TFL1 levels did not affect the inflorescence morphology caused by FT/TSF overexpression at the early bolting stage. Taking these results together, we proposed that FT/TSF and TFL1 play antagonistic roles in the determination of inflorescence meristem identity, and that FT/TSF are more important than TFL1 in this process.  相似文献   

10.
Ekrem Dündar  Daniel R. Bush 《Planta》2009,229(5):1047-1056
The Arabidopsis thaliana At2g01170 gene is annotated as a putative gamma amino butyric acid (GABA) permease based on its sequence similarity to a yeast GABA transporting gene (UGA4). A cDNA of At2g01170 was expressed in yeast and analyzed for amino acid transport activity. Both direct measurement of amino acid transport and yeast growth experiments demonstrated that the At2g01170 encoded-protein exhibits transport activity for alanine, arginine, glutamate and lysine, but not for GABA or proline. Significantly, unlike other amino acid transporters described in plants to date, At2g01170 displayed both export and import activity. Based on that observation, it was named bidirectional amino acid transporter 1 (BAT1). Sequence comparisons show BAT1 is not a member of any previously defined amino acid transporter family. It does share, however, several conserved protein domains found in a variety of prokaryotic and eukaryotic amino acid transporters, suggesting membership in an ancient family of transporters. BAT1 is a single copy gene in the Arabidopsis genome, and its mRNA is ubiquitously expressed in all organs. A transposon—GUS gene-trap insert in the BAT1 gene displays GUS localization in the vascular tissues (Dundar in Ann Appl Biol, 2009) suggesting BAT1 may function in amino acid export from the phloem into sink tissues.  相似文献   

11.
Male sterility is widely used for the production of hybrid seeds, but the use of genic male sterility is rather limited because of difficulty in maintaining homozygous male sterile plants. Recently, the DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1) gene, which encodes a phospholipase A1 involved in the first step of the jasmonic acid (JA) biosynthesis pathway, was isolated from a male sterile Arabidopsis mutant. To utilize this gene in Brassica crops, we characterized the BrDAD1 gene, the putative ortholog of DAD1 in Brassica rapa. Out of 25 plants transformed with an antisense gene constructed from the BrDAD1, 3 plants showed a defect of anther dehiscence at the flower bud opening stage and produced inviable pollen. One of the three showed male sterility only, but the other two showed a delay or a lack of flower opening in addition to male sterility. The male sterile and flower-opening phenotypes were rescued by the application of JA as well as linolenic acid. Furthermore, all these characteristics were inherited to the next generation. The present results demonstrate a novel control system for hybrid seed production by the use of nuclear genes.  相似文献   

12.
bor1-1 (high boron requiring), an Arabidopsis thaliana mutant that requires a high level of B, was isolated. When the B concentration in the medium was reduced to 3 microM, the expansion of rosette leaves was severely affected in bor1-1 but not in wild-type plants. In a medium containing 30 microM B the mutant grew normally but showed female sterility, whereas the wild type was able to set seeds. These defects of the bor1-1 mutant were not detected with supplementation of 100 microM B. In vivo concentrations of B in bor1-1 mutants were lower than those of the wild type, especially in the inflorescence stems. Tracer experiments using 10B suggested that the mutant has defects in uptake and/or translocation of B. The mutation was mapped on the lower arm of chromosome 2.  相似文献   

13.
This paper describes the expression analyses of the AtSTP3 gene of Arabidopsis thaliana, the functional characterization of the encoded protein as a new monosaccharide transporter, and introduces the AtSTP gene family. The kinetic properties of the AtSTP3 protein (for sugar transport protein 3) were studied in a hexose transport deficient mutant of Schizosaccharomyces pombe. AtSTP3 represents a new monosaccharide transporter that is composed of 514 amino acids and has a calculated molecular mass of 55·9 kDa. Kinetic analyses in yeast showed that AtSTP3 is a low affinity, energy‐dependent H + symporter with a Km for D ‐glucose of 2 m M . RNase protection analyses revealed that AtSTP3 is expressed in leaves and floral tissue of Arabidopsis. This expression pattern of the AtSTP3 gene was confirmed in AtSTP3 promoter‐ β ‐glucuronidase (GUS) plants showing AtSTP3‐driven GUS activity in green leaves, such as cotelydons, rosette and stalk leaves and sepals. Wounding caused an induction of GUS activity in the transgenic plants and an increase of AtSTP3 mRNA levels in Arabidopsis wild‐type plants. Polymerase chain reaction analyses with degenerate primers identified additional new AtSTP genes and revealed that AtSTP3 is the member of a large family of at least 14 homologous genes coding for putative monosaccharide‐H + symporters (AtSTPs).  相似文献   

14.
15.
16.
Caleosins: Ca2+-binding proteins associated with lipid bodies   总被引:8,自引:0,他引:8  
We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1–5). Northern hybridization demonstrated that AtClo2–4 mRNAs levels were low in various tissues, while AtClo1 mRNA levels were high in developing embryos and mature seeds. Analysis of transgenic Arabidopsis plants expressing the GUS reporter under control of the AtClo1 promoter showed strong levels of expression in developing embryos and also in root tip cells. Antibodies raised against AtCLO1 were used to detect caleosin in cellular fractions of Arabidopsis and rapeseed. This indicated that caleosins are a novel class of lipid body proteins, which may also be associated with an ER subdomain.  相似文献   

17.

In this study, the effects of boron stress and the application of silicon were investigated on the expression levels of barley homologues of three transporter genes, namely BOR2, PIP1, and PIP1;1, which have potential in transferring boron and silicon into or out of tissues. Boron toxicity in shoot tissues was observed as early as 1-day-long exposure by means of several stress indicators including ion leakage, malondialdehyde (MDA) and H2O2 levels. Elemental analysis showed that presence of Si under B stress reduces tissue B levels, whereas B presence increased Si levels in tissues. Presence of silicon induced BOR2 gene expression in shoots during early stress. Presence of both elements simultaneously increased BOR2 expression in both shoot and root tissues, which might be attributed to element similarity. Expression levels of both aquaporin genes PIP1 and PIP1;1 increased in shoots under short term B and Si applications, and levels were more responsive to B when compared to Si. Similar to BOR2 expression, silicon increased both aquaporin gene expressions in shoot tissues under short term boron stress. Investigation of the response of BOR2 and aquaporin genes under boron stress and in the presence of silicon revealed their sensitivity to silicon and their potential function in transporting silicon into tissues. Based on the present work, stress mitigating effects of silicon can be attributed to the competitive role of silicon for the transport via boron transporters under toxic boron levels.

  相似文献   

18.
The classical ABC model proposed for flower development in Arabidopsis and Antirrhinum appropriately sheds light on the biological process of flower development and differentiation and serves in manipulating the floral structure of other important ornamental plants. In this study, LLGLO1, a B functional gene from Lilium longiflorum was isolated and characterized. RT-PCR analysis elucidated that temporal and spatial expression pattern of LLGLO1. This putative gene was strongly expressed in 1, 2, and 3 whorl organs, i.e., outer whorl tepals, inner whorl tepals, and stamens. Genetic effect of LLGLO1 was assayed by ectopic expression in model plant Arabidopsis. Transformed plants showed homeotic transformation of sepals into petaloid sepals in the first whorl, which is similar to the transgenic plants of 35S::PI. So LLGLO1 was one member of GLO/PI sub-family gene to function in flower development.  相似文献   

19.
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases involved in various cellular, physiological, and developmental processes in yeast. However, the biological roles of CK1 members in plants are poorly understood. Here, we report that an Arabidopsis CK1 member named casein kinase 1-like 8 (CKL8) was ubiquitously expressed in all plant organs, mainly in the stems of seedlings according to quantitative real-time PCR. Western blotting showed a remarkable expression of the AtCKL8 gene in transgenic plants induced by high salinity. A histochemical assay of AtCKL8 promoter::GUS expression revealed that the AtCKL8 promoter is very active in both seedlings and adult plants subjected to the salinity stress, while no GUS activity was detectable in all the transgenic plants grown under normal conditions. In a subcellular distribution analysis, the AtCKL8-GFP fusion protein was localized mainly in the cell membrane. AtCKL8-overexpressing transgenic plants showed an insensitivity to high salinity and an early flowering phenotype. Overall, these findings suggest that AtCKL8 plays a positive role in NaCl signaling and improves salt stress tolerance in transgenic Arabidopsis.  相似文献   

20.
Arabidopsis shoots regenerate from root explants through a two-step process consisting of pre-incubation on an auxin-rich callus induction medium (CIM), followed by transfer to a cytokinin-rich shoot induction medium (SIM). The auxin receptor gene TIR1 was up-regulated when explants were transferred to SIM. The CIM pre-incubation is required for its up-regulation. The tir1-1, TIR1 knockdown mutant, reduced the efficiency of shoot regeneration in tissue culture, while its over-expression mutant significantly improved efficiency. TIR1 promoter::GUS fusion analysis demonstrated that TIR1 expression was in the shoot and the newly emerging leaves. After 10 d on SIM, several cytokinin related genes (CDKB1;1, CKS1, IPT4 and ARR15), which associate with shoot regeneration, were up-regulated in plants over-expressing TIR1 and some of these were down-regulated in the tir1-1 mutant. Thus, TIR1 appears to be involved in regulating shoot regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号