首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although legumes showed a clearly superior yield response to elevated atmospheric pCO2 compared to nonlegumes in a variety of field experiments, the extent to which this is due to symbiotic N2 fixation per se has yet to be determined. Thus, effectively and ineffectively nodulating lucerne (Medicago sativa L.) plants with a very similar genetic background were grown in competition with each other on fertile soil in the Swiss FACE experiment in order to monitor their CO2 response. Under elevated atmospheric pCO2, effectively nodulating lucerne, thus capable of symbiotically fixing N2, strongly increased the harvestable biomass and the N yield, independent of N fertilization. In contrast, the harvestable biomass and N yield of ineffectively nodulating plants were affected negatively by elevated atmospheric pCO2 when N fertilization was low. Large amounts of N fertilizer enabled the plants to respond more favourably to elevated atmospheric pCO2, although not as strongly as effectively nodulating plants. The CO2‐induced increase in N yield of the effectively nodulating plants was attributed solely to an increase in symbiotic N2 fixation of 50–175%, depending on the N fertilization treatment. N yield derived from the uptake of mineral N from the soil was, however, not affected by elevated pCO2. This result demonstrates that, in fertile soil and under temperate climatic conditions, symbiotic N2 fixation per se is responsible for the considerably greater amount of above‐ground biomass and the higher N yield under elevated atmospheric pCO2. This supports the assumption that symbiotic N2 fixation plays a key role in maintaining the C/N balance in terrestrial ecosystems in a CO2‐rich world.  相似文献   

2.
The coexistence of symbionts with different functional roles in co‐occurring plants is highly probable in terrestrial ecosystems. Analyses of how plants and microbes interact above‐ and belowground in multi‐symbiotic systems are key to understand community structure and ecosystem functioning. We performed an outdoor experiment in mesocosms to investigate the consequences of the interaction of a provider belowground symbiont of legumes (nitrogen‐fixing bacteria) and a protector aerial fungal symbiont of grasses (Epichloё endophyte) on nitrogen dynamics and aboveground net primary productivity. Four plants of Trifolium repens (Trifolium, a perennial legume) either inoculated or not with Rhizobium leguminosarum, grew surrounded by 16 plants of Lolium multiflorum (Lolium, an annual grass), with either low or high levels of the endophyte Neotyphodium occultans. After five months, we quantified the number of nodules in Trifolium roots, shoot biomass of both plant species, and the contribution of atmospheric nitrogen fixation vs. soil nitrogen uptake to above ground nitrogen in each plant species. The endophyte increased grass biomass production (+ 16%), and nitrogen uptake from the soil – the main source for the grass. Further, it reduced the nodulation of neighbour Trifolium plants (?50%). Notably, due to a compensatory increase in nitrogen fixation per nodule, this reduced neither its atmospheric nitrogen fixation – the main source of nitrogen for the legume – nor its biomass production, both of which were doubled by rhizobial inoculation. In consequence, the total amount of nitrogen in aboveground biomass and aboveground productivity were greatest in mesocosms with both symbionts (i.e. high rhizobia + high endophyte). These results show that, in spite of the deleterious effect of the endophyte on the establishment of the rhizobia–legume symbiosis, the coexistence of these symbionts, leading to additive effects on nitrogen capture and aboveground productivity, can generate complementarity on the functioning of multi‐symbiotic systems.  相似文献   

3.
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione‐deficient mutants also showed various degrees of sensitivity to Fe‐limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe‐limited conditions, glutathione‐deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split‐root experiment suggested that the systemic signals that govern the expression of Fe uptake‐related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S‐nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake‐related genes during Fe deficiency, the NO‐mediated induction of Fe‐uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe‐deficiency tolerance and NO‐mediated Fe‐deficiency signaling in Arabidopsis.  相似文献   

4.
Plants associated with symbiotic N‐fixing bacteria play important roles in early successional, riparian and semi‐dry ecosystems. These so‐called N‐fixing plants are widely used for reclamation of disturbed vegetation and improvement of soil fertility in agroforestry. Yet, available information about plants that are capable of establishing nodulation is fragmented and somewhat outdated. This article introduces the NodDB database of N‐fixing plants based on morphological and phylogenetic evidence (available at https://doi.org/10.15156/bio/587469 ) and discusses plant groups with conflicting reports and interpretation, such as certain legume clades and the Zygophyllaceae family. During angiosperm evolution, N‐fixing plants became common in the fabid rather than in the ‘nitrogen‐fixing’ clade. The global GBIF plant species distribution data indicated that N‐fixing plants tend to be relatively more diverse in savanna and semi‐desert biomes. The compiled and re‐interpreted information about N‐fixing plants enables accurate analyses of biogeography and community ecology of biological N fixation.  相似文献   

5.
Symbiotic associations between leguminous plants and nitrogen‐fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatulaSinorhizobium meliloti association is an excellent model for dissecting this nitrogen‐fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique – matrix‐assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) – to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8–bis(dimethyl‐amino) naphthalene, DMAN] with a conventional matrix 2,5–dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non‐fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.  相似文献   

6.
The interaction between legumes and rhizobia has been well studied in the context of a mutualistic, nitrogen‐fixing symbiosis. The fitness of legumes, including important agricultural crops, is enhanced by the plants’ ability to develop symbiotic associations with certain soil bacteria that fix atmospheric nitrogen into a utilizable form, namely, ammonia, via a chemical reaction that only bacteria and archaea can perform. Of the bacteria, members of the alpha subclass of the protebacteria are the best‐known nitrogen‐fixing symbionts of legumes. Recently, members of the beta subclass of the proteobacteria that induce nitrogen‐fixing nodules on legume roots in a species‐specific manner have been identified. In this issue, Bontemps et al. reveal that not only are these newly identified rhizobia novel in shifting the paradigm of our understanding of legume symbiosis, but also, based on symbiotic gene phylogenies, have a history that is both ancient and stable. Expanding our understanding of novel plant growth promoting rhizobia will be a valuable resource for incorporating alternative strategies of nitrogen fixation for enhancing plant growth.  相似文献   

7.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   

8.
Legume plants, in association with rhizobia, are gaining increasing interest for heavy metal rhizoremediation. This symbiotic interaction combines the advantages of rhizoremediation and soil nitrogen enrichment. In metal polluted soils, Ochrobactrum cytisi can elicit non‐fixing nodules on legumes, including Medicago sativa. Nodulation kinetics was much slower when M. sativa plants were inoculated with O. cytisi Azn6.2 compared with the natural symbiont Ensifer meliloti 1021 and nodules were ineffective in nitrogen fixation. A competition experiment was performed using alfalfa grown on heavy metals, and co‐inoculated with equal amounts of the metal‐sensitive E. meliloti 1021 and the metal‐resistant O. cytisi Azn6.2. When plants were inoculated in non‐polluted substrates, all nodules were formed by E. meliloti 1021. Nevertheless, under increasing metal concentrations, the number of nodules occupied by O. cytisi grew. At the highest metal concentration, all nodules were elicited by O. cytisi, suggesting that the resistant species can take the place of the natural symbiont. This fact has important ecological and environmental implications when proposing legume–rhizobia symbioses for rhizoremediation and highlights the need of selecting highly resistant rhizobia in order to be competitive in polluted soils.  相似文献   

9.
The perennial energy crop Miscanthus × giganteus is recognized for its extraordinary nitrogen‐use efficiency. While the remobilization of nitrogen (N) to the rhizome after the growth phase contributes to this efficiency, the plant‐associated microbiome might also contribute, as N‐fixing bacterial species had been isolated from this grass. Here, we studied established Miscanthus × giganteus plots in southern Germany that either received 80 kg N ha?1 a?1 or that were not N‐fertilized for 14 years. The bacterial communities of the bulk soil, rhizosphere, roots and rhizomes were analysed. Major differences were encountered between plant‐associated fractions. Nitrogen had little effect on soil communities. The roots and rhizomes showed less microbial diversity than soil fractions. In these compartments, Actinobacteria and N‐fixing symbiosis‐associated Proteobacteria depended on N. Intriguingly, N2‐fixing‐related bacterial families were enriched in the rhizomes in long‐term zero N plots, while denitrifier‐related families were depleted. These findings point to the rhizome as a potentially interesting plant organ for N fixation and demonstrate long‐term differences in the organ‐specific bacterial communities associated with different N supply, which are mainly shaped by the plant.  相似文献   

10.
The nitrogen‐fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (LjAPN1), encodes a nepenthesin‐type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain‐specific Fix phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen‐fixing) symbiosis in a rhizobial strain‐dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.  相似文献   

11.
  • Endophytic microbes isolated from plants growing in nutrient‐deficient environments often possess properties that improve nutrition of agriculturally important plants. A consortium of non‐rhizobial endophytic microbes isolated from a macrophyte Typha angustifolia growing in the marginal wetlands associated with a Uranium mine was characterized for their beneficial effect on rice and the mechanisms of growth promotion were investigated.
  • The microbes were identified and characterized for their potential plant growth promoting (PGP) properties. Effect of these microbes on nitrogen (N)‐metabolism of rice was tested as Typha endophytes were predominantly (N)‐fixing. Relative N‐use efficiency and expression of genes involved in N‐uptake and assimilation were investigated in treated plants.
  • Evidence of horizontal gene transfer (HGT) of dinitrogen reductase gene was observed within the consortium from a Pseudomonas stutzeri strain. The consortium behaved as plant probiotic and showed substantial growth benefits to Typha, their natural host as well as to rice. Typha endophytes colonized rice endosphere significantly increasing biomass, shoot length and chlorophyll content in rice plants both under N‐sufficient and N‐deficient conditions. N‐uptake and assimilation genes were upregulated in plants treated with the endophytes even after three weeks post infection.
  • Our results suggested, HGT of nitrogen‐fixation trait to be highly prevalent among endophytes isolated from nutrient‐poor habitats of the uranium mine. A long‐term nitrogen deficiency response in the treated plants was elicited by the consortium improving N‐uptake, assimilation and relative N‐use efficiency of rice plants. This appeared to be at least one of the main strategies of plant growth promotion.
  相似文献   

12.
Although organic nitrogen (N) compounds are ubiquitous in soil solutions, their potential role in plant N nutrition has been questioned. We performed a range of experiments on Arabidopsis thaliana genetically modified to enhance or reduce root uptake of amino acids. Plants lacking expression of the Lysine Histidine Transporter 1 (LHT1) displayed significantly lower contents of 13C and 15N label and of U‐13C5,15N2 L‐glutamine, as determined by liquid chromatography–mass spectrometry when growing in pots and supplied with dually labelled L‐glutamine compared to wild type plants and LHT1‐overexpressing plants. Slopes of regressions between accumulation of 13C‐labelled carbon and 15N‐labelled N were higher for LHT1‐overexpressing plants than wild type plants, while plants lacking expression of LHT1 did not display a significant regression between the two isotopes. Uptake of labelled organic N from soil tallied with that of labelled ammonium for wild type plants and LHT1‐overexpressing plants but was significantly lower for plants lacking expression of LHT1. When grown on agricultural soil plants lacking expression of LHT1 had the lowest, and plants overexpressing LHT1 the highest C/N ratios and natural δ15N abundance suggesting their dependence on different N pools. Our data show that LHT1 expression is crucial for plant uptake of organic N from soil.  相似文献   

13.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

14.
Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen‐fixing soil bacteria to form a new specific organ: the nitrogen‐fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE‐domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock‐down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume‐specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.  相似文献   

15.
Beneficial soil‐borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col‐0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant‐mediated interaction between the non‐pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore‐induced plant volatiles. The volatile blend from rhizobacteria‐treated aphid‐infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid‐infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore‐induced volatiles and parasitoid response to aphid‐infested plants is lost in an Arabidopsis mutant (aos/dde2‐2) that is impaired in jasmonic acid production. By modifying the blend of herbivore‐induced plant volatiles that depend on the jasmonic acid‐signalling pathway, root‐colonizing microbes interfere with the attraction of parasitoids of leaf herbivores.  相似文献   

16.
Biological nitrogen fixation (BNF) in woody plants is often investigated using foliar measurements of δ15N and is of particular interest in ecosystems experiencing increases in BNF due to woody plant encroachment. We sampled δ15N along the entire N uptake pathway including soil solution, xylem sap and foliage to (1) test assumptions inherent to the use of foliar δ15N as a proxy for BNF; (2) determine whether seasonal divergences occur between δ15Nxylem sap and δ15Nsoil inorganic N that could be used to infer variation in BNF; and (3) assess patterns of δ15N with tree age as indicators of shifting BNF or N cycling. Measurements of woody N‐fixing Prosopis glandulosa and paired reference non‐fixing Zanthoxylum fagara at three seasonal time points showed that δ15Nsoil inorganic N varied temporally and spatially between species. Fractionation between xylem and foliar δ15N was consistently opposite in direction between species and varied on average by 2.4‰. Accounting for these sources of variation caused percent nitrogen derived from fixation values for Prosopis to vary by up to ~70%. Soil–xylem δ15N separation varied temporally and increased with Prosopis age, suggesting seasonal variation in N cycling and BNF and potential long‐term increases in BNF not apparent through foliar sampling alone.  相似文献   

17.
  • Shrubby legumes in Mediterranean‐type ecosystems face strong nutrient limitations that worsen in summer, when water is absent. Nitrogen‐fixing legumes are likely to be able to switch between soil N and atmospheric N (N2) sources to adjust the C costs of N acquisition in different seasons.
  • We investigated the utilisation of different inorganic N sources by two indigenous shrubby legumes (Cytisus multiflorus and Cytisus scoparius). Plant performance in terms of photosynthesis and biomass production was also analysed. Plants were cultivated in sterile river sand supplied with Hoagland nutrient solution, grown in N‐free nutrient solution and inoculated with effective rhizobial strains from nodules of adult plants of the same species. A second treatment consisted of plants given 500 μm NH4NO3 added into the nutrient solution. In a third treatment, plants were watered with another source of N (500 μm NH4NO3) as well as being inoculated with effective rhizobial strains.
  • The application of NH4NO3 to the legumes resulted in a larger increase in plant dry matter. Carbon construction costs were higher in plants supplied with mineral and symbiotic N sources and always higher in the endemic C. multiflorus. Differences in photosynthesis rates were only observed between species, regardless of the N source. Non‐fertilised inoculated plants had more effective root nodules and a clear dependence on N2 fixation.
  • We propose that the ability of C. scoparius to change N source makes it a plastic species, which would account for its broader distribution in nature.
  相似文献   

18.
The contribution of N2 fixation to overall soybean N uptake has most commonly been quantified by N isotope‐based methods, which rely on isotopic differences in plant N between legumes and non‐fixing reference plants. The choice of non‐fixing reference plants is critical for the accuracy of isotope‐based methods, and mismatched reference plants remain a potential source of error. Accurate estimates of soybean N2 fixation also require information on N isotopic fractionation within soybean. On the basis of a previous observation of a close correlation between an expression of N fractionation within soybean and the proportion of plant N derived from atmosphere (%Ndfa) determined by 15N natural abundance, this field study aimed at assessing the relationship between various expressions describing intraplant 15N or N partitioning and %Ndfa during soybean development. Starting from a late vegetative stage until beginning senescence, the N content and N isotopic composition of shoots, roots and nodules of nodulated and non‐nodulated soybeans was determined at eight different developmental stages. Regression analysis showed that %Ndfa most closely correlated with the difference in the N isotopic composition of shoot N minus that of root including nodule N, and that this relationship was similar to that obtained in a previous multi‐site field study. We therefore consider this expression to hold promise as a means of quantifying %Ndfa independent of a reference plant, which would avoid some of the external sources of error introduced by the use of reference plants in determining %Ndfa.  相似文献   

19.
The adzuki bean (Vigna angularis (Wild.) Ohwi and Ohashi) and common bean (Phaseolus vulgaris L.) have a high physiological demand for N. A 2-year field study was conducted to investigate the seasonal change of available soil N and symbiotic N2 fixation usage. The beans were seeded at two densities, 22.2 plants m–2 with a row spacing of 0.3 m and 11.1 plants m–2 with a row spacing of 0.6 m. The amount of fixed N2 in the shoot was calculated using the 15N natural abundance method. The common bean demonstrated low N2 fixation and the ability to accumulate high levels of soil N. Soil nitrate under the common bean was continually absorbed. The adzuki bean, on the other hand, had a remarkable peak of N accumulation in the early reproductive stage. This was mainly due to N2 fixation, though the soil nitrate level was high. Narrowing the plant row spacing increased the dry matter yield of both species, but the origin of the increased N differed between the species. For the first 77 DAP in 1999 (73 DAP in 2000) the N increase for both beans was due to both soil and atmospheric N2. At harvest, though, the increase of N in common bean was mainly due to soil N, while that in adzuki bean was mainly due to atmospheric N2. It can be concluded that the low symbiotic N2 fixation ability of common bean was due to its high soil N uptake ability and constant N accumulation, which enabled an efficient soil N absorption. Adzuki bean absorbed N mainly for a short period and depended more on symbiotically fixed N2 and, in contrast to common bean, left a high level of NO3-N remaining in the soil after cropping.  相似文献   

20.
Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号