首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Increased atmospheric carbon dioxide supply is predicted to alter plant growth and biomass allocation patterns. It is not clear whether changes in biomass allocation reflect optimal partitioning or whether they are a direct effect of increased growth rates. Plasticity in growth and biomass allocation patterns was investigated at two concentrations of CO2 ([CO2]) and at limiting and nonlimiting nutrient levels for four fast‐ growing old‐field annual species. Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, and Polygonum pensylvanicum were grown from seed in controlled growth chamber conditions at current (350 μmol mol?1, ambient) and future‐ predicted (700 μmol mol?1, elevated) CO2 levels. Frequent harvests were used to determine growth and biomass allocation responses of these plants throughout vegetative development. Under nonlimiting nutrient conditions, whole plant growth was increased greatly under elevated [CO2] for three C3 species and moderately increased for a C4 species (Amaranthus). No significant increases in whole plant growth were observed under limiting nutrient conditions. Plants grown in elevated [CO2] had lower or unchanged root:shoot ratios, contrary to what would be expected by optimal partitioning theory. These differences disappeared when allometric plots of the same data were analysed, indicating that CO2‐induced differences in root:shoot allocation were a consequence of accelerated growth and development rates. Allocation to leaf area was unaffected by atmospheric [CO2] for these species. The general lack of biomass allocation responses to [CO2] availability is in stark contrast with known responses of these species to light and nutrient gradients. We conclude that biomass allocation responses to elevated atmospheric [CO2] are not consistent with optimal partitioning predictions.  相似文献   

2.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   

3.
Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 °C warming prevented this effect while warming without CO2 enrichment did not significantly affect N availability. These findings indicate that warming could play an important role in the impact of [CO2] on ecosystem N cycling, potentially overturning CO2‐induced effects in some ecosystems.  相似文献   

4.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

5.
Stimulation of vegetative growth by an elevated CO2 concentration does not always lead to an increase in reproductive yield. This is because reproductive yield is determined by the fraction of biomass allocated to the reproductive part as well as biomass production. We grew Xanthium canadense at low N (LN) and high N levels (HN) under an ambient (360 mol mol-1) and elevated (700 mol mol-1) CO2 concentration ([CO2]) in open-top chambers. Reproductive yield was analysed as the product of: (1) the duration of the reproductive period, (2) the rate of dry mass acquisition in the reproductive period, and (3) the fraction of acquired biomass allocated to the reproductive part. Elevated [CO2] increased the total amount of biomass that was allocated to reproductive structures, but this increase was caused by increased capsule mass without a significant increase in seed production. The increase in total reproductive mass was due mainly to an increase in the rate of dry mass acquisition in the reproductive period with a delay in leaf senescence. This positive effect was partly offset by a reduction in biomass allocation to the reproductive part at elevated [CO2] and HN. The duration of the reproductive period was not affected by elevated [CO2] but increased by HN. Seed production was strongly constrained by the availability of N for seed growth. The seed [N] was very high in X. canadense and did not decrease significantly at elevated [CO2]. HN increased seed [N] without a significant increase in seed biomass production. Limited seed growth caused a reduction in biomass allocation to the reproductive part even though dry mass production was increased due to increased [CO2] and N availability.  相似文献   

6.
7.
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free‐air CO2 enrichment (FACE) technology was used to target atmospheric [CO2] to 200 μmol mol?1 above ambient [CO2] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas‐exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season‐long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down‐regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2] unless appropriate adaptation traits can be introduced into future cultivars.  相似文献   

8.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

9.
Sandra Díaz 《Plant and Soil》1995,187(2):309-320
This review examines the effects of elevated [CO2] on plant symbioses with mycorrhizal fungi and root nodule bacteria, with emphasis on community and ecosystem processes. The effects of elevated [CO2] on the relationships between single plant species and root symbionts are considered first. There is some evidence that plant infection by and/or biomass of root symbionts are stimulated by elevated [CO2], but growth enhancement of the host seemingly depends on its degree of dependence on symbiosis and on soil nutrient availability. Second, the effects of elevated [CO2] on the relationships between plant multispecies assemblages and soil, and likely impacts on above-ground and belowground diversity, are analysed. Experimental and modelling work have suggested the existence of complex feedbacks in the responses of plants and the rhizosphere to CO2 enrichment. By modifying C inputs from plants to soil, elevated [CO2] may affect the biomass, the infectivity, and the species/isolate composition of root symbionts. This has the potential to alter community structure and ecosystem functioning. Finally, the incorporation of type and degree of symbiotic dependence into the definition of plant functional types, and into experimental work within the context of global change research, are discussed. More experimental work on the effects of elevated [CO2] at the community/ecosystem level, explicitly considering the role of root symbioses, is urgently needed.  相似文献   

10.
Hemicelluloses account for one‐quarter of the global dry plant biomass and therefore are the second most abundant biomass fraction after cellulose. Despite their quantitative significance, the responsiveness of hemicelluloses to atmospheric carbon oversupply is still largely unknown, although hemicelluloses could serve as carbon sinks with increasing CO2 concentrations. This study aimed at clarifying the role hemicelluloses play as carbon sinks, analogous to non‐structural carbohydrates (NSC), by experimentally manipulating the plants' carbon supply. Sixteen plant species from four different plant functional types (grasses, herbs, seedlings of broad‐leaved trees and conifers) were grown for 2 months in greenhouses at either extremely low (140 ppm), medium (280 ppm) or high (560 ppm) atmospheric CO2 concentrations, thus inducing situations of massive C‐limitation or ‐oversupply. Above and belowground biomass as well as NSC significantly increased in all species and tissues with increasing CO2 concentrations. Increasing CO2 concentrations had no significant effect on total hemicellulose concentrations in leaves and woody tissues in all species, except for two out of four grass species, where hemicellulose concentrations increased with atmospheric CO2 supply. Despite the overall stable total hemicellulose concentrations, the monosaccharide spectra of hemicelluloses showed a significant increase in glucose monomers in leaves of woody species as C‐supply increased. In summary, total hemicellulose concentrations in de novo built biomass seem to be largely unaffected by changed atmospheric CO2 concentrations, while significant increases of hemicellulose‐derived glucose with increasing CO2 concentrations in leaves of broad‐leaved and conifer tree seedlings showed differential responses among the different hemicellulose classes in response to varying CO2 concentrations.  相似文献   

11.
Nitrogen‐fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one‐year‐old‐seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 µ mol mol ? 1) and elevated [CO2] (700 µ mol mol ? 1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen‐fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N‐labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June–August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994–1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C‐biomass allocation away from the leaves towards the shoots (all above‐ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2‐fixing tree.  相似文献   

12.
Under elevated atmospheric CO2 concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO2 effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta‐analysis to test the hypotheses that: (1) elevated atmospheric CO2 stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO2 induces a C allocation shift towards below‐ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO2. Soil N concentration strongly interacted with CO2 fumigation: the effect of elevated CO2 on fine root biomass and –production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO2 are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.  相似文献   

13.
Although climate scenarios have predicted an increase in [CO2] and temperature conditions, to date few experiments have focused on the interaction of [CO2] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO2. The main goal of this study was to analyze the effect of interacting [CO2] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO2] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO2] (400 vs 700 µmol mol?1) and temperature (ambient vs ambient + 4°C) in CO2 gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO2] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO2] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO2] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity.  相似文献   

14.
Cycads were a dominant plant functional type during the Mesozoic Era when atmospheric carbon dioxide [CO2] greatly exceeded current conditions. Cycads, now rare and endangered, are slow‐growing perennial gymnosperms that develop carbon‐rich structural biomass, such as sclerophyllous leaves, dense stems and massive reproductive cones. Is cycad carbon partitioning to specific organs a constraint of their high [CO2] evolutionary history (CO2 legacy hypothesis, CLH)? To explore changes in cycad growth, carbon partitioning and assimilation responses that could be expected during the CO2 depletion of the Cenozoic Era, individuals of the cycad species Encephalartos villosus plants were grown at four CO2 levels: 400, 550, 750 and 1000 μmol mol?1. The CLH predicts that cycad biomass and growth rates would increase in elevated [CO2] due to increased net assimilation rates, and that carbon‐dense structures would provide sufficient carbohydrate sinks to prevent photosynthetic down‐regulation even under super‐ambient [CO2] of 1000 μmol mol?1. Both hypotheses were confirmed, though the latter less strongly. Plant relative growth rates increased 23% and biomass accumulation increased 65% in 1000 μmol mol?1relative to 400 μmol mol?1 treatment groups. Mean net assimilation rates increased 130% at 1000 μmol mol?1 relative to 400 μmol mol?1 CO2, though there was some down‐regulation of maximum rate of carboxylation (Vcmax). Assimilation rates, relative growth rates, biomass and mean leaf sugar content were linearly related to [CO2] over the entire experimental range. Photosynthesis appears to be regulated by stomata at low CO2 levels and by non‐stomatal (i.e. biochemical limitations) at greater concentrations. In general, our results suggest that growth and physiological performance of cycads have been severely compromised by declining [CO2] during the Cenozoic Era, possibly contributing to the current rare and endangered status of this functional type.  相似文献   

15.
Rising atmospheric carbon dioxide concentration ([CO2]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2] (e[CO2]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2] is always associated with post‐photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2], despite the emerging evidence of e[CO2]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.  相似文献   

16.
The sensitivity of yield and quality parameters to carbon dioxide concentration [CO2] was determined for individual lines of hard‐red spring wheat released in 1903, 1921, 1965 and 1996. All cultivars were evaluated with respect to growth and vegetative characteristics, grain yield and nutritional quality in response to [CO2] increases that corresponded roughly to the CO2 concentrations at the beginning of the 20th century, the current [CO2], and the future projected [CO2] for the end of the 21st century, respectively. Leaf area ratio (cm2 g?1) declined and net assimilation rate (g m2 day?1) increased in response to increasing [CO2] for all cultivars during early vegetative growth. By maturity, vegetative growth of all cultivars significantly increased with the increase in [CO2]. Seed yield increased significantly as [CO2] increased, with yield sensitivity to rising [CO2] inversely proportional to the year of cultivar release. Greater [CO2] yield sensitivity in older cultivars was associated with whole‐plant characteristics such as increased tillering and panicle formation. Grain and flour protein, however, declined significantly with increasing [CO2] and with year of release for all cultivars, although absolute values were higher for the older cultivars. Overall, these data indicate that yield response at the whole‐plant level to recent and projected increases in [CO2] has declined with the release of newer cultivars, as has protein content of grain and flour. However, if agronomic practice can be adapted to maximize individual plant performance, [CO2] responsive characteristics of older cultivars could, potentially, be incorporated as factors in future wheat selection.  相似文献   

17.
In plants, the allocation of carbon to secondary metabolites has been shown to be determined by both the availability of resources (e.g., CO2 concentration) and by specific stress factors (e.g., ultraviolet [UV]‐radiation). It has been suggested that, in combination, CO2 and UV‐B radiation may differentially affect plant growth and morphogenic parameters, and elevated CO2 may ameliorate the effects of UV‐B radiation. In the present work, the effects of increased atmospheric CO2 concentration and UV‐B radiation on growth and the accumulation of different types of secondary metabolites were studied in silver birch (Betula pendula Roth). Seedlings were exposed to 350 and 700 μmol mol?1 of CO2 in a greenhouse. At both CO2 levels, additional UV‐B was either present (8.16 kJ m?2 day?1 of biologically effective UV‐B irradiance) or absent. The time course of accumulation of individual secondary compounds and the shifts in allocation of carbon between biomass and the secondary metabolites (phenolic acids, flavonoids, condensed tannins) were studied during a 1‐month‐long exposure. Additionally, the activities of enzymes ( l ‐phenylalanine ammonia‐lyase [PAL], EC 4.3.1.5; peroxidase, EC 1.11.1.7; polyphenol oxidase, EC 1.10.3.1) were determined for leaves. UV‐B radiation significantly increased biomass, PAL activity, and the accumulation of phenolic acids and flavonoids in seedlings. Elevated CO2 concentration increased the activities of all the enzymes studied and the accumulation of condensed tannins in leaves, especially with UV‐B radiation. Because the observed UV‐B induction of flavonoids was smaller under a high CO2 concentration, it was suggested that the excess of carbon in the atmosphere may moderate the effect of UV‐B by increasing the metabolic activity of leaves (high enzyme activities) and by changing the allocation of internal carbon between different primary and secondary metabolites in the plant. Our results demonstrate the significant increase in the allocation of carbon to secondary metabolites without any large change in growth due to the elevation of CO2 concentration and UV‐B radiation. There also was a stronger impact of CO2 than UV‐B on the phenolic metabolism of birch seedlings.  相似文献   

18.
Physiological processes of terrestrial plants regulate the land–atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO2 concentration ([CO2]) in a 3‐year field experiment with mature boreal Norway spruce. We found that elevated [CO2] decreased photosynthetic carboxylation capacity (?23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO2] but significantly decreased (?27%) by warming, and the ratio of intercellular to ambient [CO2] was enhanced (+17%) by elevated [CO2] and decreased (?12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long‐term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO2], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation–atmosphere interactions.  相似文献   

19.
Important effects of elevated [CO2] on SOM are expected as a consequence of increased labile organic substrates derived from plants. The present study tests the hypotheses that, under elevated [CO2]: 1) soil heterotrophic respiration will increase due to roots-microbes-soil interactions; 2) the increased labile C will boost soil heterotrophic respiration, depending on N availability; 3) the temperature sensitivity of soil respiration will change, depending on nitrogen inputs and plant activity. To test these hypotheses, we measured the heterotrophic respiration of intact soil cores collected in a poplar plantation exposed to elevated [CO2] and two nitrogen inputs, at different temperatures. Additional physical (water content, root biomass) and biochemical parameters (microbial biomass, labile C) were determined on the same samples. The soil samples were collected at the POP-EuroFACE experimental site (Italy), where a Populus x euramericana plantation was exposed for 6 years to 550 ppm [CO2] (Free Air CO2 Enrichment) at two different nitrogen inputs (none or 290 kg ha?1). The higher heterotrophic respiration under elevated [CO2] (+30% on average) was driven by the larger pool of soil labile C (+57% on average). The temperature sensitivity of soil respiration was unaffected by elevated [CO2], but was positively affected by N fertilization. Our results indicate that only a fraction of the extra carbon fixed by photosynthesis in elevated [CO2] will contribute to enhanced carbon storage into the soil because of the contemporary stimulation of soil heterotrophic respiration. At the same time, the fraction remaining in the soil will enhance the pool of soil labile C.  相似文献   

20.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号