首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many areas of the cerebral cortex process sensory information or coordinate motor output necessary for control of movement. Disturbances in cortical cholinergic system can affect locomotor coordination. Spinal cord injury causes severe motor impairment and disturbances in cholinergic signalling can aggravate the situation. Considering the impact of cortical cholinergic firing in locomotion, we focussed the study in understanding the cholinergic alterations in cerebral cortex during spinal cord injury. The gene expression of key enzymes in cholinergic pathway - acetylcholine esterase and choline acetyl transferase showed significant upregulation in the cerebral cortex of spinal cord injured group compared to control with the fold increase in expression of acetylcholine esterase prominently higher than cholineacetyl transferase. The decreased muscarinic receptor density and reduced immunostaining of muscarinic receptor subtypes along with down regulated gene expression of muscarinic M1 and M3 receptor subtypes accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic receptors and reduced immunostaining of alpha 7 nicotinic receptors in confocal imaging. Our data pin points the disturbances in cortical cholinergic function due to spinal cord injury; which can augment the locomotor deficits. This can be taken into account while devising a proper therapeutic approach to manage spinal cord injury.  相似文献   

2.
Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that Bmax of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D3 receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D3 treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D3 in managing neurological disorders associated with diabetes.  相似文献   

3.
Hypoglycemic brain injury is a common and serious complication of insulin therapy associated with diabetes. This study evaluated the effect of insulin-induced hypoglycemia and STZ-induced diabetes on striatal cholinergic receptors and enzyme expression and on motor function. Cholinergic enzymes: AChE and ChAT gene expression, radioreceptor binding assay and immunohistochemistry of muscarinic M1, M3 receptors and α7nAChR were carried out. Motor performance on grid walk test was analysed. AChE and ChAT expression significantly downregulated in hypoglycemic and diabetic rats. Total muscarinic and Muscarinic M3 receptor binding decreased in hypoglycemic rats compared to diabetic rats whereas muscarinic M1 receptor binding increased in hypoglycemic rats compared to diabetic rats. Real-time PCR analysis and confocal imaging of muscarinic M1, M3 receptors confirmed the changes in muscarinic receptor binding in hypoglycemic and diabetic rats. In hypoglycemic rats, α7nAChR expression significantly up regulated compared to diabetic rats. Grid walk test demonstrated the impairment in motor function and coordination in hypoglycemic and hyperglycemic rats. Neurochemical changes along with the behavioral data implicate a role for impaired striatal cholinergic receptor function inducing motor function deficit induced by hypo and hyperglycemia. Hypoglycemia exacerbated the neurobehavioral deficit in diabetes which has clinical significance in the treatment of diabetes.  相似文献   

4.
Acetylcholine (ACh), the first neurotransmitter to be identified, regulate the activities of central and peripheral functions through interactions with muscarinic receptors. Changes in muscarinic acetylcholine receptor (mAChR) have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS). Previous reports from our laboratory on streptozotocin (STZ) induced diabetic rats showed down regulation of muscarinic M1 receptors in the brainstem, hypothalamus, cerebral cortex and pancreatic islets. In this study, we have investigated the changes of acetylcholine esterase (AChE) enzyme activity, total muscarinic and muscarinic M1 receptor binding and gene expression in the corpus striatum of STZ – diabetic rats and the insulin treated diabetic rats. The striatum, a neuronal nucleus intimately involved in motor behaviour, is one of the brain regions with the highest acetylcholine content. ACh has complex and clinically important actions in the striatum that are mediated predominantly by muscarinic receptors. We observed that insulin treatment brought back the decreased maximal velocity (Vmax) of acetylcholine esterase in the corpus striatum during diabetes to near control state. In diabetic rats there was a decrease in maximal number (Bmax) and affinity (Kd) of total muscarinic receptors whereas muscarinic M1 receptors were increased with decrease in affinity in diabetic rats. We observed that, in all cases, the binding parameters were reversed to near control by the treatment of diabetic rats with insulin. Real-time PCR experiment confirmed the increase in muscarinic M1 receptor gene expression and a similar reversal with insulin treatment. These results suggest the diabetes-induced changes of the cholinergic activity in the corpus striatum and the regulatory role of insulin on binding parameters and gene expression of total and muscarinic M1 receptors.  相似文献   

5.
The George B. Koelle Symposium on the Cholinergic Synapse described the early development of the importance of ACh as a transmitter at both cholinergic synapses of the CNS, ganglion and neuromuscular junction. While a great deal is known about the function of cholinergic transmission at the neuromuscular junction, the integrated role of cholinergic, nicotinic and muscarinic receptors in the overall process of CNS functions, i.e., behavior, motor control, abstract thinking, memory and speech remains as a challenge for future investigation. The architecture of the cholinergic synapse appears to be a dynamic process involving ARIA, Agrin and the various forms of ACh esterase. The regulation of gene expression and site directed localization of postsynaptic cholinergic receptor proteins during the life cycle involves the dynamic interactions of these agents with the postsynaptic membrane and postsynaptic gene express. The last two papers at the symposium dealt with the chemistry of the nicotinic receptor regulated channel involved in ACh binding and the consequent cationic channel conductional changes.  相似文献   

6.
The effect of tetanus toxin in doses of 30 mcg/kg on the content, synthesis and release of acetylcholine, and on the activity of choline acetylase and acetylcholine esterase in the central nervous system of the rat was studied. The investigations were carried out after the appearance of tetanus. We found that the tetanus toxin: a) caused no changes in the acetylcholine content in the cerebral cortex and brain stem, and also in the cervical and lumbar parts of the spinal cord; b) stimulated acetylcholine synthesis in the brain stem and in the cervical and lumbar parts of the spinal cord but not in the cerebral cortex; c) activated choline acetylase; d) had no effect on acetylcholine esterase activity; e) released acetylcholine from the neurons in the brain stem and spinal cord. The release could not be inhibited by low concentration of potassium ions in the medium or increased with electrical stimulation.  相似文献   

7.
The cholinergic neurons have long been a model for biochemical studies of neurotransmission. The components responsible for cholinergic neurotransmission, such as choline acetyltransferase, vesicular acetylcholine transporter, nicotinic and muscarinic acetylcholine receptors, and acetylcholine esterase, have long been defined as functional units and then identified as molecular entities. Another essential component in the cholinergic synapses is the one responsible for choline uptake from the synaptic cleft, which is thought to be the rate-limiting step in acetylcholine synthesis. A choline uptake system with a high affinity for choline has long been assumed to be present in cholinergic neurons. Very recently, the molecular entity for the high-affinity choline transporter was identified and is designated CHT1. CHT1 mediates Na+- and Cl-dependent choline uptake with high sensitivity to hemicholinium-3. CHT1 has been characterized both at the molecular and functional levels and was confirmed to be specifically expressed in cholinergic neurons.  相似文献   

8.
Nutritional therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. The study evaluates the effect of vitamin D3 in preventing the altered function of cholinergic, insulin receptors and GLUT3 in the cerebral cortex of diabetic rats. Muscarinic M3 acetylcholine receptors in pancreas control insulin secretion. Vitamin D3 treatment in M3 receptor regulation in the pancreatic islets was also studied. Radioreceptor binding assays and gene expression was done in the cerebral cortex of male Wistar rats. Immunocytochemistry of muscarinic M3 receptor was studied in the pancreatic islets using specific antibodies. Y-maze was used to evaluate the exploratory and spatial memory. Diabetes induced a decrease in muscarinic M1, insulin and vitamin D receptor expression and an increase in muscarinic M3, α7 nicotinic acetylcholine receptor, acetylcholine esterase and GLUT3 expression. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. Diabetic rats showed a decreased Y-maze performance while vitamin D3 supplementation improved the behavioural deficit. In conclusion, vitamin D3 shows a potential therapeutic effect in normalizing diabetes-induced alterations in cholinergic, insulin and vitamin D receptor and maintains a normal glucose transport and utilisation in the cortex. In addition vitamin D3 modulated muscarinic M3 receptors activity in pancreas and plays a pivotal role in controlling insulin secretion. Hence our findings proved, vitamin D3 supplementation as a potential nutritional therapy in ameliorating diabetes mediated cortical dysfunctions and suggest an interaction between vitamin D3 and muscarinic M3 receptors in regulating insulin secretion from pancreas.  相似文献   

9.
Sympathetic ganglia are composed of noradrenergic and cholinergic neurons. Cholinergic sympathetic neurons are characterized by the expression of choline acetyl transferase (ChAT), vesicular acetylcholine transporter (VAChT) and the vasoactive intestinal peptide (VIP). To investigate the role of cytokine growth factor family members in the development of cholinergic sympathetic neurons, we interfered in vivo with the function of the subclass of cytokine receptors that contains LIFRbeta as essential receptor subunit. Expression of LIFRbeta antisense RNA interfered with LIFRbeta expression and strongly reduced the developmental induction of VIP expression. By contrast, ganglion size and the number of ChAT-positive cells were not reduced. These results demonstrate a physiological role of cytokines acting through LIFRbeta-containing receptors in the control of VIP expression in sympathetic neurons.  相似文献   

10.
The presence of nicotinic and muscarinic receptors suggests the occurrence of cholinergic neurotransmission in white matter; however no quantitative information exists on acetylcholine formation and breakdown in white matter. We compared white structures of pig brain (fimbria, corpus callosum, pyramidal tracts, and occipital white matter) to gray structures (temporal, parietal and cerebellar cortices, hippocampus, and caudate) and found that sodium-dependent, high-affinity choline uptake in white structures was 25–31% of that in hippocampus. White matter choline acetyltransferase activity was 10–50% of the hippocampal value; the highest activity was found in fimbria. Acetylcholine esterase activity in white structures was 20–25% of that in hippocampus. The caudate, which is rich in cholinergic interneurons, gave values for all three parameters that were 2.8–4 times higher than in hippocampus. The results suggest a certain capacity for cholinergic neurotransmission in central nervous white matter. The white matter activity of pyruvate dehydrogenase, which provides acetyl-CoA for acetylcholine synthesis, ranged between 33 and 50% of the hippocampal activity; the activity in the caudate was similar to that in hippocampus and the other gray structures, which was true also for other enzymes of glucose metabolism: hexokinase, phosphoglucomutase, and glucose-6-phosphate dehydrogenase. Acetylcholine esterase activity in white matter was inhibited by the nerve agent soman, which may help explain the reported deleterious effect of soman on white matter. Further, this finding suggests that acetylcholine esterase inhibitors used in Alzheimer's disease may have an effect in white matter.  相似文献   

11.
R D Schwartz 《Life sciences》1986,38(23):2111-2119
The relative distribution of muscarinic and nicotinic cholinergic receptors labeled with [3H]acetylcholine was determined using autoradiography. [3H]Acetylcholine binding to high affinity muscarinic receptors was similar to what has been described for an M-2 distribution: highest levels of binding occurred in the pontine and brainstem nuclei, anterior pretectal area and anteroventral thalamic nucleus, while lower levels occurred in the caudate-putamen, accumbens nucleus and primary olfactory cortex. Nicotinic receptors were labeled with [3H]acetylcholine to the greatest extent in the interpeduncular nucleus, several thalamic nuclei, medial habenula, presubiculum and superior colliculus, and to the least extent in the hippocampus and inferior colliculus. By using autoradiography to localize cholinergic binding sites throughout the brain it was observed that the distributions of high affinity muscarinic and nicotinic sites labeled with the endogenous ligand, [3H]acetylcholine are different from each other and are different from distributions of muscarinic and nicotinic sites labeled with muscarinic and nicotinic antagonists.  相似文献   

12.
Postnatal Development of Cholinergic Enzymes and Receptors in Mouse Brain   总被引:12,自引:0,他引:12  
The developmental profiles for the cholinergic enzymes acetylcholinesterase and choline acetyltransferase, and the muscarinic and nicotinic receptors were determined in whole mouse brain. The enzyme activities (per milligram of protein) increased steadily from birth, reaching adult levels at 20 days of age. These increases were primarily due to increases in Vmax. Muscarinic receptor numbers, measured by [3H]quinuclidinyl benzilate binding, also increased from birth to 25 days of age. Brain nicotinic receptors were measured with the ligands L-[3H]nicotine and alpha-[125I]-bungarotoxin. Neonatal mouse brain had approximately twice the number of alpha-bungarotoxin binding sites found in adult mouse brain. Binding site numbers rose slightly until 10 days of age, after which they decreased to adult values, which were reached at 25 days of age. The nicotine binding site was found in neonatal brain at concentrations comparable to those at the alpha-bungarotoxin site followed by a steady decline in nicotine binding until adult values were reached. Thus, brain nicotinic and muscarinic systems develop in totally different fashions; the quantity of muscarinic receptors increases with age, while the quantity of nicotinic receptors decreases. It is conceivable that nicotinic receptors play an important role in directing the development of the cholinergic system.  相似文献   

13.
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.  相似文献   

14.
The establishment of correct neurotransmitter characteristics is an essential step of neuronal fate specification in CNS development. However, very little is known about how a battery of genes involved in the determination of a specific type of chemical-driven neurotransmission is coordinately regulated during vertebrate development. Here, we investigated the gene regulatory networks that specify the cholinergic neuronal fates in the spinal cord and forebrain, specifically, spinal motor neurons (MNs) and forebrain cholinergic neurons (FCNs). Conditional inactivation of Isl1, a LIM homeodomain factor expressed in both differentiating MNs and FCNs, led to a drastic loss of cholinergic neurons in the developing spinal cord and forebrain. We found that Isl1 forms two related, but distinct types of complexes, the Isl1-Lhx3-hexamer in MNs and the Isl1-Lhx8-hexamer in FCNs. Interestingly, our genome-wide ChIP-seq analysis revealed that the Isl1-Lhx3-hexamer binds to a suite of cholinergic pathway genes encoding the core constituents of the cholinergic neurotransmission system, such as acetylcholine synthesizing enzymes and transporters. Consistently, the Isl1-Lhx3-hexamer directly coordinated upregulation of cholinergic pathways genes in embryonic spinal cord. Similarly, in the developing forebrain, the Isl1-Lhx8-hexamer was recruited to the cholinergic gene battery and promoted cholinergic gene expression. Furthermore, the expression of the Isl1-Lhx8-complex enabled the acquisition of cholinergic fate in embryonic stem cell-derived neurons. Together, our studies show a shared molecular mechanism that determines the cholinergic neuronal fate in the spinal cord and forebrain, and uncover an important gene regulatory mechanism that directs a specific neurotransmitter identity in vertebrate CNS development.  相似文献   

15.
Lu  X.R.  Ong  W.Y.  Mackie  K. 《Brain Cell Biology》1999,28(12):1045-1051
The distribution of the CB1 cannabinoid receptor was studied in the monkey basal forebrain by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in the medial septum, nucleus of the diagonal band, and the nucleus basalis of Meynert. The labelled neurons had dimensions similar to those of cholinergic neurons and were larger than those of GABAergic neurons. Double immunolabelling with an antibody to the synthetic enzyme for acetylcholine, choline acetyl transferase (ChAT) showed that CB1-positive neurons were also positive for ChAT, whilst electron microscopy confirmed that CB1-labelled neurons contained lipofuscin granules and dense clusters of rough endoplasmic reticulum, characteristic of cholinergic neurons. The dense labelling of cholinergic neurons for CB1 is interesting from the standpoint of neuroprotection. The CB1 receptor has been shown to couple in an inhibitory manner to voltage dependent calcium channels, and the dense labelling of CB1 in cholinergic neurons would therefore suggest that CB1 receptors could be important in limiting calcium influx through voltage dependent calcium channels in these neurons. This could serve to limit intracellular calcium concentrations, and consequent calcium mediated injury, in these neurons.  相似文献   

16.
Egg-laying behavior in Caenorhabditis elegans is regulated by multiple neurotransmitters, including acetylcholine and serotonin. Agonists of nicotinic acetylcholine receptors such as nicotine and levamisole stimulate egg laying; however, the genetic and molecular basis for cholinergic neurotransmission in the egg-laying circuitry is not well understood. Here we describe the egg-laying phenotypes of eight levamisole resistance genes, which affect the activity of levamisole-sensitive nicotinic receptors in nematodes. Seven of these genes, including the nicotinic receptor subunit genes unc-29, unc-38, and lev-1, were essential for the stimulation of egg laying by levamisole, though they had only subtle effects on egg-laying behavior in the absence of drug. Thus, these genes appear to encode components of a nicotinic receptor that can promote egg laying but is not necessary for egg-laying muscle contraction. Since the levamisole-receptor mutants responded to other cholinergic drugs, other acetylcholine receptors are likely to function in parallel with the levamisole-sensitive receptors to mediate cholinergic neurotransmission in the egg-laying circuitry. In addition, since expression of functional unc-29 in muscle cells restored levamisole sensitivity under some but not all conditions, both neuronal and muscle cell UNC-29 receptors are likely to contribute to the regulation of egg-laying behavior. Mutations in one levamisole receptor gene, unc-38, also conferred both hypersensitivity and reduced peak response to serotonin; thus nicotinic receptors may play a role in regulating serotonin response pathways in the egg-laying neuromusculature.  相似文献   

17.
The species- and situation-specific sound production of grasshoppers can be stimulated by focal application of both nicotinic and muscarinic receptor agonists into the central body complex of the protocerebrum. Pressure injection of the intrinsic transmitter acetylcholine only elicits fast and short-lived responses related to nicotinic receptor-mediated excitation. Prolonged sound production that includes complex song patterns requires muscarinic receptor-mediated excitation. In addition, basal muscarinic excitation in the central body neuropil seems to determine the general motivation of a grasshopper to stridulate. To demonstrate that endogenous acetylcholinesterase limits the activation of muscarinic receptors by synaptically released acetylcholine in the central body of Chorthippus biguttulus, we investigated both its presence in the brain and effects on sound production resulting from inhibition of esterase activity. Acetylcholinesterase activity was detected in the upper and lower division of the central body. Both these neuropils known to be involved in the cephalic control of stridulation were also shown to contain muscarinic acetylcholine receptors expressed by columnar neurons suggested to serve as output neurons of the central complex. Pressure injection of the acetylcholinesterase inhibitor eserine into protocerebral control circuits of restrained male grasshoppers stimulated long-lasting stridulation that depended on scopolamine-sensitive muscarinic receptors. In restrained males, eserine released the typical response song by potentiating the stimulatory effect of the conspecific female song. Eserine-mediated inhibition of acetylcholinesterase in the central body prolongs the presence of synaptically released acetylcholine at its postsynaptic receptors and increases its potency to activate muscarinic receptor-initiated signaling pathways acting to promote grasshopper sound production.  相似文献   

18.
Administration of recombinant human keratinocyte growth factor (rHuKGF, Delta23N-KGF, palifermin) protects the lung against a variety of injurious stimuli. The exact mechanisms leading to lung protection are unknown. Alterations in the non-neuronal cholinergic system of the lung might be involved, as vital pulmonary functions are regulated by acetylcholine. Here, we investigated the effect of KGF on the expression of nicotinic acetylcholine receptor subunits alpha7, alpha9 and alpha10 in rat lungs. Adult rats were treated via intratracheal instillation with rHuKGF or with an equivalent volume of PBS. The expression of nicotinic acetylcholine receptor subunits was analyzed by real-time RT-PCR, immunoblotting and immunohistochemistry. Treatment with rHuKGF led to a decreased expression of nicotinic receptor subunit alpha7 in the total lung. In contrast, the expression of the receptor subunits alpha9 and alpha10 was up-regulated. In conclusion, nicotinic acetylcholine receptors are differentially regulated by KGF treatment in vivo, which might result in changes in the biological effects of acetylcholine.  相似文献   

19.
A variety of studies indicate that spinal nicotinic acetylcholine receptors modulate the behavioral and autonomic responses elicited by afferent stimuli. To examine the location of and role played by particular subtypes of nicotinic receptors in mediating cardiovascular and nociceptive responses, we treated neonatal and adult rats with capsaicin to destroy C-fibers in primary afferent terminals. Reduction of C-fiber terminals was ascertained by the loss of isolectin B4, CGRP and vanilloid receptors as monitored by immunofluorescence. Receptor autoradiography shows a reduction in number of epibatidine binding sites following capsaicin treatment. The reduction is particularly marked in the dorsal horn and primarily affects the class of high affinity epibatidine binding sites thought to modulate nociceptive responses. Accompanying the loss of terminals and nicotinic binding sites were significant reductions in the expression of α 3, α 4, α 5, β 2 and β 4 nicotinic receptor subunits in the superficial layers of the spinal cord as determined by antibody staining and confocal microscopy. The loss of nicotinic receptors that follows capsaicin treatment results in attenuation of the nociceptive responses to both spinal cytisine and epibatidine. Capsaicin treatment also diminishes the capacity of cytisine to desensitize nicotinic receptors mediating nociception, but it shows little effect on intrathecal nicotinic agonist elicited pressor and heart rate responses. Hence, our data suggest that α 3, α 4, α 5, β 2 and β 4 subunits of nicotinic receptors are localized in the spinal cord on primary afferent terminals that mediate nociceptive input. A variety of convergent data based on functional studies and subunit expression suggest that α 3 and α 4, in combination with β 2 and α 5 subunits, form the majority of functional nicotinic receptors on C-fiber primary afferent terminals. Conversely, spinal nicotinic receptors not located on C-fibers play a primary role in the spinal pathways evoking spinally coordinated autonomic cardiovascular responses.  相似文献   

20.
The lymphocytic cholinergic system and its biological function   总被引:14,自引:0,他引:14  
Kawashima K  Fujii T 《Life sciences》2003,72(18-19):2101-2109
Lymphocytes are now known to possess the essential components for a non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulating lymphocytes with phytohemagglutinin, a T-cell activator; Staphylococcus aureus Cowan I, a B-cell activator; or cell surface molecules enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. Activation of mAChRs and nAChRs on lymphocytes elicits increases in the intracellular Ca(2+) concentration and stimulates c-fos gene expression and nitric oxide synthesis. On the other hand, long-term exposure to nicotine down-regulates expression of nAChR mRNA. Abnormalities in the lymphocytic cholinergic system have been detected in spontaneously hypertensive rats and MRL-lpr mice, two animal models of immune disorders. Taken together, these data present a compelling picture in which immune function is, at least in part, under the control of an independent non-neuronal lymphocytic cholinergic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号