首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
Intricate interactions within the ccd plasmid addiction system.   总被引:3,自引:0,他引:3  
The ccd addiction system plays a crucial role in the stable maintenance of the Escherichia coli F plasmid. It codes for a stable toxin (CcdB) and a less stable antidote (CcdA). Both are expressed at low levels during normal cell growth. Upon plasmid loss, CcdB outlives CcdA and kills the cell by poisoning gyrase. The interactions between CcdB, CcdA, and its promoter DNA were analyzed. In solution, the CcdA-CcdB interaction is complex, leading to various complexes with different stoichiometry. CcdA has two binding sites for CcdB and vice versa, permitting soluble hexamer formation but also causing precipitation, especially at CcdA:CcdB ratios close to one. CcdA alone, but not CcdB, binds to promoter DNA with high on and off rates. The presence of CcdB enhances the affinity and the specificity of CcdA-DNA binding and results in a stable CcdA*CcdB*DNA complex with a CcdA:CcdB ratio of one. This (CcdA(2)CcdB(2))(n) complex has multiple DNA-binding sites and spirals around the 120-bp promoter region.  相似文献   

4.
5.
Control of the ccd operon in plasmid F.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

6.
Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.  相似文献   

7.
8.
The two opponents, toxin (CcdB, LetB or LetD, protein G, LynB) and antidote (CcdA, LetA, protein H, LynA), in the plasmid addiction system ccd of the F plasmid were studied by different biophysical methods. The thermodynamic stability was measured at different temperatures combining denaturant and thermally induced unfolding. It was found that both proteins denature in a two-state equilibrium (native dimer versus unfolded monomer) and that CcdA has a significantly lower thermodynamic stability. Using a numerical model, which was developed earlier by us, and on the basis of the determined thermodynamic parameters the concentration dependence of the denaturation transition temperature was obtained for both proteins. This concentration dependence may be of physiological significance, as the concentration of both ccd addiction proteins cannot exceed a certain limit because their expression is controlled by autoregulation.The influence of DNA on the thermal stability of the two proteins was probed. It was found that cognate DNA increases the melting temperature of CcdA. In the presence of non-specific DNA the thermal stability was not changed. The melting temperature of CcdB was not influenced by the applied double-stranded oligonucleotides, neither cognate nor unspecific.  相似文献   

9.
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.  相似文献   

10.
11.
Summary The ccd operon of plasmid F encodes two genes, ccdA and ccdB, which contribute to the high stability of the plasmid by post-segregational killing of plasmid-free bacteria. The CcdB protein is lethal to bacteria and the CcdA protein is an antagonist of this lethal action. A 520 by fragment containing the terminal part of the ccdA gene and the entire ccdB gene of plasmid F was cloned downstream of the tac promoter. Although the CcdB protein was expressed from this fragment, no killing of host bacteria was observed. We found that the absence of killing was due to the presence of a small polypeptide, CcdA41, composed of the 41 C-terminal residues of the CcdA protein. This polypeptide has retained the ability to regulate negatively the lethal activity of the CcdB protein.  相似文献   

12.
大肠杆菌毒素-抗毒素系统ccd(control of cell division or death system)编码的毒素蛋白CcdB使细胞内DNA促旋酶失活,杀伤宿主细胞,而抗毒素蛋白CcdA可以中和毒素CcdB使宿主存活。利用这个原理,CcdB可作为细菌转化时的筛选标记,在构建各种高效低背景载体上发挥重要作用。我们简要综述毒素蛋白CcdB的毒性原理及其在质粒载体构建中的广泛应用。  相似文献   

13.
The F plasmid-carried bacterial toxin, the CcdB protein, is known to act on DNA gyrase in two different ways. CcdB poisons the gyrase-DNA complex, blocking the passage of polymerases and leading to double-strand breakage of the DNA. Alternatively, in cells that overexpress CcdB, the A subunit of DNA gyrase (GyrA) has been found as an inactive complex with CcdB. We have reconstituted the inactive GyrA-CcdB complex by denaturation and renaturation of the purified GyrA dimer in the presence of CcdB. This inactivating interaction involves the N-terminal domain of GyrA, because similar inactive complexes were formed by denaturing and renaturing N-terminal fragments of the GyrA protein in the presence of CcdB. Single amino acid mutations, both in GyrA and in CcdB, that prevent CcdB-induced DNA cleavage also prevent formation of the inactive complexes, indicating that some essential interaction sites of GyrA and of CcdB are common to both the poisoning and the inactivation processes. Whereas the lethal effect of CcdB is most probably due to poisoning of the gyrase-DNA complex, the inactivation pathway may prevent cell death through formation of a toxin-antitoxin-like complex between CcdB and newly translated GyrA subunits. Both poisoning and inactivation can be prevented and reversed in the presence of the F plasmid-encoded antidote, the CcdA protein. The products of treating the inactive GyrA-CcdB complex with CcdA are free GyrA and a CcdB-CcdA complex of approximately 44 kDa, which may correspond to a (CcdB)2(CcdA)2 heterotetramer.  相似文献   

14.
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.  相似文献   

15.
The ccd locus contributes to the stability of plasmid F by post-segregational killing of plasmid-free bacteria. The ccdB gene product is a potent cell-killing protein and its activity is negatively regulated by the CcdA protein, in this paper, we show that the CcdA protein is unstable and that the degradation of CcdA is dependent on the Lon protease. Differences in the stability of the killer CcdB protein and its antidote CcdA are the key to post-segregational killing. Because the half-life of active CcdA protein is shorter than that of active CcdB protein, persistence of the CcdB protein leads to the death of plasmid-free bacterial segregants.  相似文献   

16.
In Escherichia coli, the miniF plasmid CcdB protein is responsible for cell death when its action is not prevented by polypeptide CcdA. We report the isolation, localization, sequencing and properties of a bacterial mutant resistant to the cytotoxic activity of the CcdB protein. This mutation is located in the gene encoding the A subunit of topoisomerase II and produces an Arg462----Cys substitution in the amino acid sequence of the GyrA polypeptide. Hence, the mutation was called gyrA462. We show that in the wild-type strain, the CcdB protein promotes plasmid linearization; in the gyrA462 strain, this double-stranded DNA cleavage is suppressed. This indicates that the CcdB protein is responsible for gyrase-mediated double-stranded DNA breakage. CcdB, in the absence of CcdA, induces the SOS pathway. SOS induction is a biological response to DNA-damaging agents. We show that the gyrA462 mutation suppresses this SOS activation, indicating that SOS induction is a consequence of DNA damages promoted by the CcdB protein on gyrase-DNA complexes. In addition, we observe that the CcdBS sensitive phenotype dominates over the resistant phenotype. This is better explained by the conversion, in gyrA+/gyrA462 merodiploid strains, of the wild-type gyrase into a DNA-damaging agent. These results strongly suggest that the CcdB protein, like quinolone antibiotics and a variety of antitumoral drugs, is a DNA topoisomerase II poison. This is the first proteinic poison-antipoison mechanism that has been found to act via the DNA topoisomerase II.  相似文献   

17.
Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.  相似文献   

18.
19.
20.
Bacteriophage Mu repressor, which is stable in its wildtype form, can mutate to become sensitive to its Escherichia coli host ATP-dependent ClpXP protease. We further investigated the determinants of the mutant repressor's sensitivity to Clp. We show the crucial importance of a C-terminal, seven amino acid long sequence in which a single change is sufficient to decrease the rate of degradation of the protein. The sequence was fused at the C-terminal end of the CcdB and CcdA proteins encoded by plasmid F. CcdB, which is naturally stable, was unaffected, while CcdA, which is normally degraded by the Lon protease, became a substrate for ClpXP while remaining a substrate for Lon. In agreement with the current hypothesis on the mechanism of recognition of their substrates by energy- dependent proteases, these results support the existence, on the substrate polypeptides, of separate motifs responsible for recognition and cleavage by the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号