首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
In the present work, sustained release gastroretentive minimatrices of amoxicillin have been designed and optimized using central composite design. Effect of amount of xanthan gum, rate controlling polymers (HPMC K100M CR/PEO coagulant (1:1)), carbopol 974P, and gas generating couple (sodium bicarbonate/citric acid (3:1)) was studied on dependent (response) variables, i.e., buoyancy lag time, drug release at 1 h, time required for 95% drug release, swelling index, and bioadhesive strength. Minimatrices were prepared by non aqueous granulation method using solution of PVP K30 in isopropyl alcohol. All the formulations were found to contain 99.2% to 100.9% of amoxicillin per minimatrix. Optimum formulation (Formulation number AGT09) containing high level of the independent variables was having buoyancy lag time of 7 min and drug release at 1 h was 32.5%. It required 9.39 h for 95% drug release while swelling index and bioadhesive strength were 341 and 17.9 dyn/cm2, respectively. This formulation was said to be optimum because it has minimum buoyancy lag time, requires maximum time for 95% drug release, and has higher bioadhesive capabilities. In vitro results of an optimized formulation indicate its sustained drug release and gastric retention capability, which may be very useful for effective treatment of H. pylori infection.  相似文献   

2.
The objective of present study was to develop a gastroretentive drug delivery system of propranolol hydrochloride. The biggest problem in oral drug delivery is low and erratic drug bioavailability. The ability of various polymers to retain the drug when used in different concentrations was investigated. Hydroxypropyl methylcellulose (HPMC) K4 M, HPMC E 15 LV, hydroxypropyl cellulose (HPC; Klucel HF), xanthan gum, and sodium alginate (Keltose) were evaluated for their gel-forming abilities. One of the disadvantages in using propranolol is extensive first pass metabolism of drug and only 25% reaches systemic circulation. The bioavailability of propranolol increases in presence of food. Also, the absorption of various drugs such as propranolol through P-glycoprotein (P-gp) efflux transporter is low and erratic. The density of P-gp increases toward the distal part of the gastrointestinal tract (GIT). Therefore, it was decided to formulate floating tablet of propranolol so that it remains in the upper part of GIT for longer time. They were evaluated for physical properties, in vitro release as well as in vivo behavior. In preliminary trials, tablets formulated with HPC, sodium alginate, and HPMC E 15 LV failed to produce matrix of required strength, whereas formulation containing xanthan gum showed good drug retaining abilities but floating abilities were found to be poor. Finally, floating tablets were formulated with HPMC K4 M and HPC.  相似文献   

3.
The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.KEY WORDS: badam gum, floating, gastroretentive, propranolol HCl, Terminalia catappa  相似文献   

4.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

5.
The purpose of this research was to develop the hydrodynamically balanced delivery system of Clarithromycin (CLA) which, after oral administration should have the ability to prolong gastric residence time with the desired in vitro release profile for the localized action in the stomach, in the treatment of Helicobacter pylori (H.pylori) mediated peptic ulcer. By applying wet granulation technique floating tablets of Clarithromycin were prepared. The proportion of sodium bicarbonate was varied to get the least possible lag time, also the polymer part varied to get the desired release. In vivo radiographic studies were performed with Barium sulphate loaded formulation to justify the increased gastric residence time of the dosage form in the stomach, based on the floating principle. The formulation developed using 66.2% Clarithromycin, 12% HPMC K4M polymer, 8% sodium bicarbonate gave floating lag time less than 3 min with a floating time of 12 h, and an in vitro release profile very near to the desired release. X-ray studies showed the enhanced gastric residence time of the tablet to 220 ± 30 min. The mechanism of release of Clarithromycin from the floating tablets is anomalous diffusion transport and follows zero order kinetics. In vivo radiographic studies suggest that the tablet has increased gastric residence time for the effective localized action of the antibiotic (Clarithromycin) in the treatment of H.pylori mediated peptic ulcer.  相似文献   

6.
Interpolyelectrolyte (IPE) complexation between carrageenan (CG) and Eudragit E (EE) was studied in 0.1 M HCl and was used to develop floating matrix tablets aimed to prolong gastric-residence time and sustain delivery of the loaded drug. The optimum EE/CG IPE complexation weight ratio (0.6) was determined in 0.1 M HCl using apparent viscosity measurements. The IPE complex was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Metronidazole matrix tablets were prepared by direct compression using EE, CG, or hybrid EE/CG with ratio optimal for IPE complexation. Corresponding effervescent tablets were prepared by including Na bicarbonate as an effervescent agent. Tablets were evaluated for in vitro buoyancy and drug release in 0.1 M HCl. Both CG and EE–CG effervescent matrices (1:2 drug to polymer weight ratio, 60 mg Na bicarbonate) achieved fast and prolonged floating with floating lag times less than 30 s and floating duration of more than 10 h. The corresponding EE effervescent matrices showed delayed floating and rapid drug release, and completely dissolved after 3 h of dissolution. CG matrices showed an initial burst drug release (48.3 ± 5.0% at 1 h) followed by slow drug release over 8 h. EE–CG matrices exhibited sustained drug release in almost zero-order manner for 10 h (68.2 ± 6.6%). The dissolution data of these matrices were fitted to different dissolution models. It was found that drug release followed zero-order kinetics and was controlled by the superposition of the diffusion and erosion.  相似文献   

7.
Drugs that have narrow absorption window in the gastrointestinal tract (GIT) will have poor absorption. For these drugs, gastroretentive drug delivery systems offer the advantage in prolonging the gastric emptying time. Swellable, floating, and sustained release tablets are developed by using a combination of hydrophilic polymer (hydroxypropyl methylcellulose), swelling agents (crospovidone, sodium starch glycolate, and croscarmelose sodium) and effervescent substance (sodium bicarbonate). Formulations are evaluated for percentage swelling, in vitro drug release, floating lag time, total duration of floating, and mean residence time (MRT) in the stomach. The drug release of optimized formulation follows the Higuchi kinetic model, and the mechanism is found to be non-Fickian/anomalous according to Krosmeyer–Peppas (n value is 0.68). The similarity factor (f 2) is found to be 26.17 for the optimized formulation, which the release is not similar to that of marketed produced (CIFRAN OD®). In vivo nature of the tablet at different time intervals is observed in the radiographic pictures of the healthy volunteers and MRT in the stomach is found to be 320?±?48.99 min (n?=?6). A combination of HPMC K100M, crospovidone, and sodium carbonate shows the good swelling, drug release, and floating characters than the CIFRAN OD®.  相似文献   

8.

Introduction

Imatinib mesylate is an antineoplastic agent which has high absorption in the upper part of the gastrointestinal tract (GIT). Conventional imatinib mesylate (Gleevec) tablets produce rapid and relatively high peak blood levels and requires frequent administration to keep the plasma drug level at an effective range. This might cause side effects, reduced effectiveness and poor therapeutic management. Therefore, floating sustained-release Imatinib tablets were developed to allow the tablets to be released in the upper part of the GIT and overcome the inadequacy of conventional tablets.

Methodology

Floating sustained-release Imatinib mesylate tablets were prepared using the wet granulation method. Tablets were formulated using Hydroxypropyl Methylcellulose (HPMC K4M), with Sodium alginate (SA) and Carbomer 934P (CP) as release-retarding polymers, sodium bicarbonate (NaHCO3) as the effervescent agent and lactose as a filler. Floating behavior, in vitro drug release, and swelling index studies were conducted. Initial and total drug release duration was compared with a commercial tablet (Gleevec) in 0.1 N HCl (pH 1.2) at 37 ± 0.5°C for 24 hours. Tablets were then evaluated for various physical parameters, including weight variation, thickness, hardness, friability, and drug content. Consequently, 6 months of physical stability studies and in vitro gastro-retentive studies were conducted.

Results and Discussion

Statistical data analysis revealed that tablets containing a composition of 14.67% w/w HPMC K4M, 10.67%, w/w Na alginate, 1.33%, w/w Carbomer 934P and 9.33%, w/w NaHCO3 produced the most favorable formulation to develop 24-hour sustained-release tablets with optimum floating behavior and satisfactory physicochemical characteristics. Furthermore, in vitro release study revealed that the formulated SR tablet had significantly lower Cmax and higher Tmax compared to the conventional tablet (Gleevec). Thus, formulated SR tablets preserved persistent concentration of plasma up to 24 hours.

Conclusion

In conclusion, in order to suggest a better drug delivery system with constant favorable release, resulting in optimized absorption and less side effects, formulated CP-HPMC-SA based imatinib mesylate floating sustained-release tablets can be a promising candidate for cancer chemotherapy.  相似文献   

9.
Patel VF  Patel NM 《AAPS PharmSciTech》2006,7(1):E118-E124
This investigation describes the development of an intragastric drug-delivery system for cefuroxime axetil. The 32 full factorial design was employed to evaluate contribution of hydroxypropyl methyl cellulose (HPMC) K4M/HPMC K100 LV ratio (polymer blend) and sodium lauryl sulfate (SLS) on drug release from HPMC matrices. Tablets were prepared using direct compression technique. Formulations were evaluated for in vitro buoyancy and drug release study using United States Pharmacopeia (USP) 24 paddletype dissolution apparatus using 0.1N HCl as a dissolution medium. Multiple regression analysis was performed for factorial design batches to evaluate the response. All formulations had floating lag times below 2 minutes and constantly floated on dissolution medium for more than 8 hours. It was found that polymer blend and SLS significantly affect the time required for 50% of drug release, percentage drug release at 12 hours, release rate constant, and diffusion exponent (P<.05). Also linear relationships were obtained between the amount of HPMC K100 LV and diffusion exponent as well as release rate constant. Kinetic treatment to dissolution profiles revealed drug release ranges from anomalous transport to case 1 transport, which was mainly dependent on both the independent variables. Published: February 24, 2006  相似文献   

10.
The present work investigates the feasibility of the design of a novel floating elementary osmotic pump tablet (FEOPT) to prolong the gastric residence of a highly water-soluble drug. Diethylcarbamazine citrate (DEC) was chosen as a model drug. The FEOPT consisted of an osmotic core (DEC, mannitol, and hydrophilic polymers) coated with a semipermeable layer (cellulose acetate) and a gas-generating gelling layer (sodium bicarbonate, hydrophilic polymers) followed by a polymeric film (Eudragit RL 30D). The effect of formulation variables such as concentration of polymers, types of diluent, and coat thickness of semipermeable membrane was evaluated in terms of physical parameters, floating lag time, duration of floatation, and in vitro drug release. The Fourier transform infrared and X-ray diffraction analysis were carried out to study the physicochemical changes in the drug excipients powder blend. The integrity of the orifice and polymeric film layer was confirmed from scanning electron microscopy image. All the developed FEOPT showed floating lag time of less than 8 min and floating duration of 24 h. A zero-order drug release could be attained for DEC. The formulations were found to be stable up to 3 months of stability testing at 40°C/75% relative humidity.  相似文献   

11.
The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100∶0, 80∶20, 60∶40, 20∶80, 0∶100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f 2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard. Published: March 17, 2006  相似文献   

12.
The present investigation was undertaken to fabricate modified release tablet of metoprolol succinate using hydroxypropyl methylcellulose (HPMC) and xanthan gum as a matrixing agent. A 32 full factorial design was employed for the optimization of formulation. The percentage drug released at a given time (Y 60, Y 240 and Y 720) and the time required for a given percentage of drug to be released (t 50%) were selected as dependent variables. The in vitro drug dissolution study was carried out in pH 6.8 phosphate buffer employing paddle rotated at 50 rpm. The similarity factor (f 2) was calculated for selection of best batch considering mean in vitro dissolution data of Seloken® XL as a reference profile. It is concluded that the desired drug release pattern can be obtained by using a proper combination of HPMC (high gelling ability) and xanthan gum (quick gelling tendency). The economy of xanthan gum and faster hydration rate favors its use in modified release tablets. The matrix integrity during dissolution testing was maintained by using hydroxypropyl methylcellulose.  相似文献   

13.
Novel self-microemulsifying floating tablets were developed to enhance the dissolution and oral absorption of the poorly water-soluble tetrahydrocurcumin (THC). Their physicochemical properties and THC permeability across Caco-2 cell monolayers were assessed. The self-microemulsifying liquid containing THC was adsorbed onto colloidal silicon dioxide, mixed with HPMC, gas-generating agents (sodium bicarbonate and tartaric acid), lactose and silicified-microcrystalline cellulose and transformed into tablets by direct compression. The use of different types/concentrations of HPMC and sodium bicarbonate in tablet formulations had different effects on the floating characteristics and in vitro THC release. The optimum tablet formulation (F2) provided a short floating lag time (∼23 s) together with a prolonged buoyancy (>12 h). About 72% of THC was released in 12 h with an emulsion droplet size in aqueous media of 33.9 ± 1.0 nm while that of a self-microemulsifying liquid was 29.9 ± 0.3 nm. The tablet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. The THC released from the self-microemulsifying liquid and tablet formulations provided an approximately three- to fivefold greater permeability across the Caco-2 cell monolayers than the unformulated THC and indicated an enhanced absorption of THC by the formulations. The self-microemulsifying floating tablet could provide a dosage form with the potential to improve the oral bioavailability of THC and other hydrophobic compounds.KEY WORDS: Caco-2 cells, controlled release, permeability, self-microemulsifying floating tablets, tetrahydrocurcumin  相似文献   

14.
A gastro retentive floating drug delivery system with multiple-unit minitab’s based on gas formation technique was developed in order to prolong the gastric residence time and to increase the overall bioavailability of the drug. The system consists of the drug-containing core units prepared by direct compression process, which are coated with three successive layers of an inner seal coat, effervescent layer (sodium bicarbonate) and an outer gas-entrapped polymeric membrane of an polymethacrylates (Eudragit RL30D, RS30D, and combinations of them). Only the system using Eudragit RL30D and combination of them as a gas-entrapped polymeric membrane could float. The time to float decreased as amount of the effervescent agent increased and coating level of gas-entrapped polymeric membrane decreased. The optimum system floated completely within 3 min and maintained the buoyancy over a period of 12 h. The drug release was controlled and linear with the square root of time. Increasing coating level of gas-entrapped polymeric membrane decreased the drug release. Both the rapid floating and the controlled release properties were achieved in the multiple-unit floating drug delivery system developed in this present study. The analysis of the parameter dissolution data after storage at 40 °C and 75% RH for 3 months showed, no significant change indicating the two dissolution profiles were considered to be similar (f2 value is more than 50).  相似文献   

15.
The objective of present investigation was to develop venlafaxine hydrochloride-layered tablets for obtaining sustained drug release. The tablets containing venlafaxine hydrochloride 150 mg were prepared by wet granulation technique using xanthan gum in the middle layer and barrier layers. The granules and tablets were characterized. The in vitro drug dissolution study was conducted in distilled water. The tablets containing two lower strengths were also developed using the same percentage composition of the middle layer. Kinetics of drug release was studied. The optimized batches were tested for water uptake study. Radar diagrams are provided to compare the performance of formulated tablets with the reference products, Effexor XR capsules. The granules ready for compression exhibited good flow and compressibility when xanthan gum was used in the intragranular and extragranular fractions. Monolayer tablets failed to give the release pattern similar to that of the reference product. The drug release was best explained by Weibull model. A unified Weibull equation was evolved to express drug release from the formulated tablets. Lactose facilitated drug release from barrier layers. Substantial water uptake and gelling of xanthan gum appears to be responsible for sustained drug release. The present study underlines the importance of formulation factors in achieving same drug release pattern from three strengths of venlafaxine hydrochloride tablets.  相似文献   

16.
Ray S  Maiti S  Sa B 《AAPS PharmSciTech》2008,9(1):295-301
The objective of this study was to develop a multiunit sustained release dosage form of diltiazem using a natural polymer from a completely aqueous environment. Diltiazem was complexed with resin and the resinate-loaded carboxymethyl xanthan (RCMX) beads were prepared by interacting sodium carboxymethyl xanthan (SCMX), a derivatized xanthan gum, with Al+3 ions. The beads were evaluated for drug entrapment efficiency (DEE) and release characteristics in enzyme free simulated gastric fluid (SGF, HCl solution, pH 1.2) and simulated intestinal fluid (SIF, USP phosphate buffer solution, pH 6.8). Increase in gelation time from 5 to 20 min and AlCl3 concentration from 1 to 3% decreased the DEE respectively from 95 to 79% and 88.5 to 84.6%. However, increase in gum concentration from 1.5 to 2.5% increased the DEE from 86.5 to 90.7%. The variation in DEE was related to displacement of drug from the resinate by the gel forming Al+3 ions. While 75–82% drug was released in 2 h in SGF from various beads, 75 to 98% drug was released in 5 hour in SIF indicating the dependence of drug release on pH of dissolution media. Although the beads maintained their initial integrity throughout the dissolution process in both media, as evident from scanning electron microscopic studies, the faster release in SGF was accounted for higher swelling of the beads in SGF than in SIF. When release data (up to 60%) was fitted in power law expression, the drug release was found to be controlled by diffusion with simultaneous relaxation phenomena.  相似文献   

17.
The exudates from the incised trunk of Terminalia randii has been evaluated as controlled release excipient in comparison with xanthan gum and hydroxypropylmethylcellulose (HPMC) using carvedilol (water insoluble) and theophylline (water soluble) as model drugs. Matrix tablets were prepared by direct compression and the effects of polymer concentration and excipients—spray dried lactose, microcrystalline cellulose and dicalcium phosphate dihydrate on the mechanical (crushing strength (CS) friability (F) and crushing strength–friability ratio (CSFR)) and drug release properties of the matrix tablets were evaluated. The drug release data were fitted into different release kinetics equations to determine the drug release mechanism(s) from the matrix tablets. The results showed that the CS and CSFR increased with increase in polymer concentration while F decreased. The ranking of CS and CSFR was HPMC > terminalia > xanthan while the ranking was reverse for F. The ranking for t 25 (i.e. time for 25% drug release) at a polymer concentration of 60% was xanthan > terminalia = HPMC. The dissolution time, t 25, of theophylline matrices was significantly lower (p < 0.001) than those of carvedilol matrix tablets. Drug release from the matrices was by swelling, diffusion and erosion. The mechanical and drug release properties of the tablets were significantly (p < 0.05) dependent on the type and concentration of polymer and excipients used with the release mechanisms varying from Fickian to anomalous. Terminalia gum compared favourably with standard polymers when used in controlled release matrices and could serve as a suitable alternative to the standard polymers in drug delivery.  相似文献   

18.
The objectives of this study were to develop and evaluate a novel self-emulsifying floating drug delivery system (SEFDDS) that resulted in improved solubility, dissolution, and controlled release of the poorly water-soluble tetrahydrocurcumin (THC). The formulations of liquid self-emulsifying drug delivery system (SEDDS; mixtures of Labrasol, Cremophor EL, Capryol 90, Labrafac PG) were optimized by solubility assay and pseudo-ternary phase diagram analysis. The liquid SEDDS was mixed with adsorbent (silicon dioxide), glyceryl behenate, pregelatinized starch, sodium starch glycolate, and microcrystalline cellulose and transformed into pellets by the extrusion/spheronization technique. The resulting pellets with 22% liquid SEDDS had a uniform size and good self-emulsification property. The microemulsions in aqueous media of different self-emulsifying floating pellet formulations were in a particle size range of 25.9–32.5 nm. Use of different weight proportions of glyceryl behenate and sodium starch glycolate in pellet formulations had different effects on the floating abilities and in vitro drug release. The optimum formulation (F2) had a floating efficiency of 93% at 6 h and provided a controlled release of THC over an 8-h period. The release rate and extent of release of THC liquid SEDDS (80% within 2 h) and self-emulsifying floating pellet formulation (80% within 8 h) were significantly higher than that of unformulated THC (only 30% within 8 h). The pellet formulation was stable under intermediate and accelerated storage conditions for up to 6 months. Controlled release from this novel SEFDDS can be a useful alternative for the strategic development of oral solid lipid-based formulations.  相似文献   

19.
The aim of the present study was to develop and evaluate a buccal adhesive tablet containing ondansetron hydrochloride (OH). Special punches and dies were fabricated and used while preparing buccal adhesive tablets. The tablets were prepared using carbopol (CP 934), sodium alginate, sodium carboxymethylcellulose low viscosity (SCMC LV), and hydroxypropylmethylcellulose (HPMC 15cps) as mucoadhsive polymers to impart mucoadhesion and ethyl cellulose to act as an impermeable backing layer. The formulations were prepared by direct compression and characterized by different parameters such as weight uniformity, content uniformity, thickness, hardness, swelling index, in vitro drug release studies, mucoadhesive strength, and ex vivo permeation study. As compared with the optimized formulation composed of OH—5 mg, CP 934—30 mg, SCMC LV—165 mg, PEG 6000—40 mg, lactose—5 mg, magnesium stearate—1.5 mg, and aspartame—2 mg, which gave the maximum release (88.15%), non-bitter (OH) that form namely ondansetron base and complexed ondansetron was used in order to make the selected formulation acceptable to human. The result of the in vitro release studies and permeation studies through bovine buccal mucosa revealed that complexed ondansetron gave the maximum release and permeation. The stability of drug in the optimized adhesive tablet was tested for 6 h in natural human saliva; both the drug and device were found to be stable in natural human saliva. Thus, buccal adhesive tablet of ondansetron could be an alternative route to bypass the hepatic first-pass metabolism and to improve the bioavailability of (OH).  相似文献   

20.
Trimetazidine dihydrochloride is an effective anti-anginal agent; however, it is freely soluble in water and suffers from a relatively short half-life. To solve this encumbrance, it is a prospective candidate for fabricating trimetazidine extended-release formulations. Trimetazidine extended-release floating tablets were prepared using different hydrophilic matrix forming polymers including HPMC 4000 cps, carbopol 971P, polycarbophil, and guar gum. The tablets were fabricated by dry coating technique. In vitro evaluation of the prepared tablets was performed by the determination of the hardness, friability, content uniformity, and weight variation. The floating lag time and floating duration were also evaluated. Release profile of the prepared tablets was performed and analyzed. Furthermore, a stability study of the floating tablets was carried out at three different temperatures over 12 weeks. Finally, in vivo bioavailability study was done on human volunteers. All tablet formulas achieved <0.5 min of floating lag time, more than 12 h of floating duration, and extended t 1/2. The drug release in all formulas followed zero-order kinetics. T4 and T8 tablets contained the least polymer concentration and complied with the dissolution requirements for controlled-release dosage forms. These two formulas were selected for further stability studies. T8 exhibited longer expiration date and was chosen for in vivo studies. T8 floating tablets showed an improvement in the drug bioavailability compared to immediate-release tablets (Vastrel® 20 mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号