首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The kinetochore, a macromolecular complex located at the centromere of chromosomes, provides essential functions for accurate chromosome segregation. Kinetochores contain checkpoint proteins that monitor attachments between the kinetochore and microtubules to ensure that cells do not exit mitosis in the presence of unaligned chromosomes. Here we report that human CENP-I, a constitutive protein of the kinetochore that shares limited similarity with Mis6 of Schizosaccharomyces pombe, is required for the localization of CENP-F and the checkpoint proteins MAD1 and MAD2 to kinetochores. Depletion of CENP-I from kinetochores causes the cell cycle to delay in G2. Although monopolar chromosomes in CENP-I-depleted cells fail to establish bipolar connections, the cells are unable to arrest in mitosis. These cells are transiently delayed in mitosis in a MAD2-dependent manner, even though their kinetochores are depleted of MAD2. The delay is extended considerably when the number of unattached kinetochores is increased. This suggests that no single unattached kinetochore in CENP-I-depleted cells can arrest mitosis. The collective output from many unattached kinetochores is required to reach a threshold signal of 'wait for anaphase' to sustain a prolonged mitotic arrest.  相似文献   

2.
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint.  相似文献   

3.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

4.
Kinetochores attach chromosomes to the spindle microtubules and signal the spindle assembly checkpoint to delay mitotic exit until all chromosomes are attached. Light microscopy approaches aimed to indirectly determine distances between various proteins within the kinetochore (termed Delta) suggest that kinetochores become stretched by spindle forces and compact elastically when the force is suppressed. Low Delta is believed to arrest mitotic progression in taxol-treated cells. However, the structural basis of Delta remains unknown. By integrating same-kinetochore light microscopy and electron microscopy, we demonstrate that the value of Delta is affected by the variability in the shape and size of outer kinetochore domains. The outer kinetochore compacts when spindle forces are maximal during metaphase. When the forces are weakened by taxol treatment, the outer kinetochore expands radially and some kinetochores completely lose microtubule attachment, a condition known to arrest mitotic progression. These observations offer an alternative interpretation of intrakinetochore tension and question whether Delta plays a direct role in the control of mitotic progression.  相似文献   

5.
During mitosis, the spindle checkpoint senses kinetochores not properly attached to spindle microtubules and prevents precocious sister-chromatid separation and aneuploidy. The constitutive centromere-associated network (CCAN) at inner kinetochores anchors the KMN network consisting of Knl1, the Mis12 complex (Mis12C), and the Ndc80 complex (Ndc80C) at outer kinetochores. KMN is a critical kinetochore receptor for both microtubules and checkpoint proteins. Here, we show that nearly complete inactivation of KMN in human cells through multiple strategies produced strong checkpoint defects even when all kinetochores lacked microtubule attachment. These KMN-inactivating strategies reveal multiple KMN assembly mechanisms at human mitotic kinetochores. In one mechanism, the centromeric kinase Aurora B phosphorylates Mis12C and strengthens its binding to the CCAN subunit CENP-C. In another, CENP-T contributes to KMN attachment in a CENP-H-I-K–dependent manner. Our study provides insights into the mechanisms of mitosis-specific assembly of the checkpoint platform KMN at human kinetochores.  相似文献   

6.
The accuracy of chromosome segregation is enhanced by the spindle assembly checkpoint (SAC). The SAC is thought to monitor two distinct events: attachment of kinetochores to microtubules and the stretch of the centromere between the sister kinetochores that arises only when the chromosome becomes properly bioriented. We examined human cells undergoing mitosis with unreplicated genomes (MUG). Kinetochores in these cells are not paired, which implies that the centromere cannot be stretched; however, cells progress through mitosis. A SAC is present during MUG as cells arrest in response to nocodazole, taxol, or monastrol treatments. Mad2 is recruited to unattached MUG kinetochores and released upon their attachment. In contrast, BubR1 remains on attached kinetochores and exhibits a level of phosphorylation consistent with the inability of MUG spindles to establish normal levels of centromere tension. Thus, kinetochore attachment to microtubules is sufficient to satisfy the SAC even in the absence of interkinetochore tension.  相似文献   

7.
During cell division, kinetochores form the primary chromosomal attachment sites for spindle microtubules. We previously identified a network of 10 interacting kinetochore proteins conserved between Caenorhabditis elegans and humans. In this study, we investigate three proteins in the human network (hDsn1Q9H410, hNnf1PMF1, and hNsl1DC31). Using coexpression in bacteria and fractionation of mitotic extracts, we demonstrate that these proteins form a stable complex with the conserved kinetochore component hMis12. Human or chicken cells depleted of Mis12 complex subunits are delayed in mitosis with misaligned chromosomes and defects in chromosome biorientation. Aligned chromosomes exhibited reduced centromere stretch and diminished kinetochore microtubule bundles. Consistent with this, localization of the outer plate constituent Ndc80HEC1 was severely reduced. The checkpoint protein BubR1, the fibrous corona component centromere protein (CENP) E, and the inner kinetochore proteins CENP-A and CENP-H also failed to accumulate to wild-type levels in depleted cells. These results indicate that a four-subunit Mis12 complex plays an essential role in chromosome segregation in vertebrates and contributes to mitotic kinetochore assembly.  相似文献   

8.
《The Journal of cell biology》1994,127(5):1301-1310
To test the popular but unproven assumption that the metaphase-anaphase transition in vertebrate somatic cells is subject to a checkpoint that monitors chromosome (i.e., kinetochore) attachment to the spindle, we filmed mitosis in 126 PtK1 cells. We found that the time from nuclear envelope breakdown to anaphase onset is linearly related (r2 = 0.85) to the duration the cell has unattached kinetochores, and that even a single unattached kinetochore delays anaphase onset. We also found that anaphase is initiated at a relatively constant 23-min average interval after the last kinetochore attaches, regardless of how long the cell possessed unattached kinetochores. From these results we conclude that vertebrate somatic cells possess a metaphase-anaphase checkpoint control that monitors sister kinetochore attachment to the spindle. We also found that some cells treated with 0.3-0.75 nM Taxol, after the last kinetochore attached to the spindle, entered anaphase and completed normal poleward chromosome motion (anaphase A) up to 3 h after the treatment--well beyond the 9-48-min range exhibited by untreated cells. The fact that spindle bipolarity and the metaphase alignment of kinetochores are maintained in these cells, and that the chromosomes move poleward during anaphase, suggests that the checkpoint monitors more than just the attachment of microtubules at sister kinetochores or the metaphase alignment of chromosomes. Our data are most consistent with the hypothesis that the checkpoint monitors an increase in tension between kinetochores and their associated microtubules as biorientation occurs.  相似文献   

9.
When Mad met Bub   总被引:1,自引:0,他引:1       下载免费PDF全文
The faithful segregation of chromosomes into daughter cells is essential for cellular and organismal viability. Errors in this process cause aneuploidy, a hallmark of cancer and several congenital diseases. For proper separation, chromosomes attach to microtubules of the mitotic spindle via their kinetochores, large protein structures assembled on centromeric chromatin. Kinetochores are also crucial for a cell cycle feedback mechanism known as the spindle assembly checkpoint (SAC) 1 . The SAC forces cells to remain in mitosis until all chromosomes are properly attached to microtubules. At the beginning of mitosis, the SAC proteins—Mad1, Mad2, Bub1, Bub3, BubR1, Mps1, and Cdc20—are recruited to kinetochores in a hierarchical and interdependent fashion (Fig  1 A). There they monitor, in ways that are not fully clarified, the formation of kinetochore–microtubule attachments 1 . Two studies recently published in EMBO reports by the groups of Silke Hauf 2 and Jakob Nilsson 3 , and a recent study by London and Biggins in Genes & Development 4 , shed new light on the conserved SAC protein Mad1.  相似文献   

10.
Merotelic kinetochore orientation is a kinetochore misattachment in which a single kinetochore is attached to microtubules from both spindle poles instead of just one. It can be favored in specific circumstances, is not detected by the mitotic checkpoint, and induces lagging chromosomes in anaphase. In mammalian cells, it occurs at high frequency in early mitosis, but few anaphase cells show lagging chromosomes. We developed live-cell imaging methods to determine whether and how the mitotic spindle prevents merotelic kinetochores from producing lagging chromosomes. We found that merotelic kinetochores entering anaphase never lost attachment to the spindle poles; they remained attached to both microtubule bundles, but this did not prevent them from segregating correctly. The two microtubule bundles usually showed different fluorescence intensities, the brighter bundle connecting the merotelic kinetochore to the correct pole. During anaphase, the dimmer bundle lengthened much more than the brighter bundle as spindle elongation occurred. This resulted in correct segregation of the merotelically oriented chromosome. We propose a model based on the ratios of microtubules to the correct versus incorrect pole for how anaphase spindle dynamics and microtubule polymerization at kinetochores prevent potential segregation errors deriving from merotelic kinetochore orientation.  相似文献   

11.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8, and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientation-deficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. The spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. Progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.  相似文献   

12.
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.  相似文献   

13.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

14.
Kinetochores are large protein complexes that bind to centromeres. By interacting with microtubules and their associated motor proteins, kinetochores both generate and regulate chromosome movement. Kinetochores also function in the spindle checkpoint; a surveillance mechanism that ensures that metaphase is complete before anaphase begins. Although the ultrastructure of plant kinetochores has been known for many years, only recently have specific kinetochore proteins been identified. The recent data indicate that plant kinetochores contain homologs of many of the proteins implicated in animal and fungal kinetochore function, and that the plant kinetochore is a redundant structure with distinct biochemical subdomains.  相似文献   

15.
Merotelic kinetochore attachment is a major source of aneuploidy in mammalian tissue cells in culture. Mammalian kinetochores typically have binding sites for about 20-25 kinetochore microtubules. In prometaphase, kinetochores become merotelic if they attach to microtubules from opposite poles rather than to just one pole as normally occurs. Merotelic attachments support chromosome bi-orientation and alignment near the metaphase plate and they are not detected by the mitotic spindle checkpoint. At anaphase onset, sister chromatids separate, but a chromatid with a merotelic kinetochore may not be segregated correctly, and may lag near the spindle equator because of pulling forces toward opposite poles, or move in the direction of the wrong pole. Correction mechanisms are important for preventing segregation errors. There are probably more than 100 times as many PtK1 tissue cells with merotelic kinetochores in early mitosis, and about 16 times as many entering anaphase as the 1% of cells with lagging chromosomes seen in late anaphase. The role of spindle mechanics and potential functions of the Ndc80/Nuf2 protein complex at the kinetochore/microtubule interface is discussed for two correction mechanisms: one that functions before anaphase to reduce the number of kinetochore microtubules to the wrong pole, and one that functions after anaphase onset to move merotelic kinetochores based on the ratio of kinetochore microtubules to the correct versus incorrect pole.  相似文献   

16.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8 and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientationdeficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. the spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.Key words: spindle assembly checkpoint, kinetochore-microtubule attachments, biorientation, DAM1-765  相似文献   

17.
The spindle checkpoint coordinates cell cycle progression and chromosome segregation by inhibiting anaphase promoting complex/cyclosome until all kinetochores interact with the spindle properly. During early mitosis, the spindle checkpoint proteins, such as Mad2 and Bub1, accumulate at kinetochores that do not associate with the spindle. Here, we assess the requirement of various kinetochore components for the accumulation of Mad2 and Bub1 on the kinetochore in fission yeast and show that the necessity of the Mis6-complex and the Nuf2-complex is an evolutionarily conserved feature in the loading of Mad2 onto the kinetochore. Furthermore, we demonstrated that Nuf2 is required for maintaining the Mis6-complex on the kinetochore during mitosis. The Mis6-complex physically interacts with Mad2 under the condition that the Mad2-dependent checkpoint is activated. Ectopically expressed N-terminal fragments of Mis6 localize along the mitotic spindle, highlighting the potential binding ability of Mis6 not only to the centromeric chromatin but also to the spindle microtubules. We propose that the Mis6-complex, in collaboration with the Nuf2-complex, monitors the spindle-kinetochore attachment state and acts as a platform for Mad2 to accumulate at unattached kinetochores.  相似文献   

18.
Cytoplasmic dynein is the only known kinetochore protein capable of driving chromosome movement toward spindle poles. In grasshopper spermatocytes, dynein immunofluorescence staining is bright at prometaphase kinetochores and dimmer at metaphase kinetochores. We have determined that these differences in staining intensity reflect differences in amounts of dynein associated with the kinetochore. Metaphase kinetochores regain bright dynein staining if they are detached from spindle microtubules by micromanipulation and kept detached for 10 min. We show that this increase in dynein staining is not caused by the retraction or unmasking of dynein upon detachment. Thus, dynein genuinely is a transient component of spermatocyte kinetochores.We further show that microtubule attachment, not tension, regulates dynein localization at kinetochores. Dynein binding is extremely sensitive to the presence of microtubules: fewer than half the normal number of kinetochore microtubules leads to the loss of most kinetochoric dynein. As a result, the bulk of the dynein leaves the kinetochore very early in mitosis, soon after the kinetochores begin to attach to microtubules. The possible functions of this dynein fraction are therefore limited to the initial attachment and movement of chromosomes and/or to a role in the mitotic checkpoint.  相似文献   

19.
The Ndc80 complex: hub of kinetochore activity   总被引:2,自引:0,他引:2  
Ciferri C  Musacchio A  Petrovic A 《FEBS letters》2007,581(15):2862-2869
Kinetochores are protein scaffolds coordinating the process of chromosome segregation in mitosis. Kinetochore components are organized in functionally and topologically distinct domains that are designed to connect the sister chromatids to the mitotic spindle. The inner kinetochore proteins are in direct contact with the centromeric DNA, whilst the outer kinetochore proteins are responsible for binding to spindle microtubules. The conserved Ndc80 complex is implicated in several essential outer kinetochore functions, including microtubule binding and control of a safety device known as the spindle assembly checkpoint. Here, we describe how current work is contributing to unravel the complex endeavors of this essential kinetochore complex.  相似文献   

20.
Members of the Ndc80/Nuf2 complex have been shown in several systems to be important in formation of stable kinetochore-microtubule attachments and chromosome alignment in mitosis. In HeLa cells, we have shown that depletion of Nuf2 by RNA interference (RNAi) results in a strong prometaphase block with an active spindle checkpoint, which correlates with low but detectable Mad2 at kinetochores that have no or few stable kinetochore microtubules. Another RNAi study in HeLa cells reported that Hec1 (the human Ndc80 homolog) is required for Mad1 and Mad2 binding to kinetochores and that kinetochore bound Mad2 does not play a role in generating and maintaining the spindle assembly checkpoint. Here, we show that depletion of either Nuf2 or Hec1 by RNAi in HeLa cells results in reduction of both proteins at kinetochores and in the cytoplasm. Mad1 and Mad2 concentrate at kinetochores in late prophase/early prometaphase but become depleted by 5-fold or more over the course of the prometaphase block, which is Mad2 dependent. The reduction of Mad1 and Mad2 is reversible upon spindle depolymerization. Our observations support a model in which Nuf2 and Hec1 function to prevent microtubule-dependent stripping of Mad1 and Mad2 from kinetochores that have not yet formed stable kinetochore-microtubule attachments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号