首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By EPR spectroscopy, we investigated free radical production by cultured human alveolar cells subjected to anoxia/re-oxygenation (A/R), and tested the effects of ceftazidime, an antibiotic previously demonstrated to possess antioxidant properties. Two A/R models were performed on type II pneumocytes (A549 cell line), either on cells attached to culture dishes (monolayer A/R model; 3.5 h of anoxia, 30 min of re-oxygenation) or after cell detachment (suspension A/R model; 1 h of anoxia, 10 min of re-oxygenation). Ceftazidime and selective inhibitors (SOD, Tiron, L-NMMA) were added before anoxia. Free radical production was assessed by the EPR spin trapping technique. Oxygen consumption was monitored, in parallel with EPR studies, in the suspension A/R model. The production of free radical species was demonstrated by the generation of PBN-radical adducts: (a(N) = 15.2 G) in the monolayer A/R model and a six-line EPR spectrum (a(N) = 15.7 G and a(H) = 2.7 G) in the suspension A/R model. A kinetic study performed by oximetry, in parallel with EPR spectroscopy, demonstrated marked alterations of the cell respiratory function and that the free radical production started during anoxia and increased during re-oxygenation. In the suspension A/R model, the amplitude of EPR spectra were decreased upon the addition of 200 U/ml SOD (37% inhibition), 0.1 mM Tiron (67% inhibition) and 1 mM L-NMMA (43% inhibition). Addition of 1 mM ceftazidime decreased the amplitude of EPR spectra (37% inhibition) in both A/R models. Complementary in vitro EPR studies demonstrated that CAZ scavenged the hydroxyl radical (produced by the Fenton reaction). The protective effect of ceftazidime in the cell model could thus be linked to its ability to scavenge superoxide anions, nitrogen-derived species and hydroxyl radicals.  相似文献   

2.
We investigated the oxygen (O(2)) uptake of equine articular chondrocytes to assess their reactions to anoxia/re-oxygenation. They were cultured under 5% or 21% gas phase O(2) and at glucose concentrations of 0, 1.0 or 4.5g/L in the culture medium (n=3). Afterwards, the O(2) consumption rate of the chondrocytes was monitored (oxymetry) before and after an anoxia period of 25min. The glucose consumption and lactate release were measured at the end of the re-oxygenation period. The chondrocytes showed a minimal O(2) consumption rate, which was hardly changed by anoxia. Independently from the O(2) tension, glucose uptake by the cells was about 30% of the available culture medium glucose, thus higher for cells at 4.5g/L glucose (n=3). Lactate release was also independent from O(2) tension, but lower for cells at 4.5g/L glucose (n=3). Our observations indicated that O(2) consumption by equine chondrocytes was very low despite a functional mitochondrial respiratory chain, and nearly insensitive to anoxia/re-oxygenation. But the chondrocytes metabolism was modified by an excess of O(2) and glucose.  相似文献   

3.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation.  相似文献   

4.
Each R2 subunit of mammalian ribonucleotide reductase contains a pair of high spin ferric ions and a tyrosyl free radical essential for activity. To study the mechanism of tyrosyl radical formation, substoichiometric amounts of Fe(II) were added to recombinant mouse R2 apoprotein under strictly anaerobic conditions and then the solution was exposed to air. Low temperature EPR spectroscopy showed that the signal from the generated tyrosyl free radical correlated well with the quantity of the Fe(II) added with a stoichiometry of 3 Fe(II) needed to produce 1 tyrosyl radical: 3 Fe(II) + P + O2 + Tyr-OH + H+----Fe(III)O2-Fe(III)-P + H2O. + Tyr-O. + Fe(III), where P is an iron-binding site of protein R2 and Tyr-OH is the active tyrosyl residue. The O-O bond of a postulated intermediate O2(2-)-Fe(III)2-P state is cleaved by the extra electron provided by Fe(II) leading to formation of OH., which in turn reacts with Tyr-OH to give Tyr-O.. In the presence of ascorbate, added to reduce the monomeric Fe(III) formed, 80% of the Fe(II) added produced a radical. The results strongly indicate that each dimeric Fe(III) center during its formation can generate a tyrosyl-free radical and that iron binding to R2 apoprotein is highly cooperative.  相似文献   

5.
The reaction between metmyoglobin and hydrogen peroxide results in the two-electron reduction of H2O2 by the protein, with concomitant formation of a ferryl-oxo heme and a protein-centered free radical. Sperm whale metmyoglobin, which contains three tyrosine residues (Tyr-103, Tyr-146, and Tyr-151) and two tryptophan residues (Trp-7 and Trp-14), forms a tryptophanyl radical at residue 14 that reacts with O2 to form a peroxyl radical and also forms distinct tyrosyl radicals at Tyr-103 and Tyr-151. Horse metmyoglobin, which lacks Tyr-151 of the sperm whale protein, forms an oxygen-reactive tryptophanyl radical and also a phenoxyl radical at Tyr-103. Human metmyoglobin, in addition to the tyrosine and tryptophan radicals formed on horse metmyoglobin, also forms a Cys-110-centered thiyl radical that can also form a peroxyl radical. The tryptophanyl radicals react both with molecular oxygen and with the spin trap 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) traps the Tyr-103 radicals and the Cys-110 thiyl radical of human myoglobin, and 2-methyl-2-nitrosopropane (MNP) traps all of the tyrosyl radicals. When excess H2O2 is used, DBNBS traps only a tyrosyl radical on horse myoglobin, but the detection of peroxyl radicals and the loss of tryptophan fluorescence support tryptophan oxidation under those conditions. Kinetic analysis of the formation of the various free radicals suggests that tryptophanyl radical and tyrosyl radical formation are independent events, and that formation of the Cys-110 thiyl radical on human myoglobin occurs via oxidation of the thiol group by the Tyr-103 phenoxyl radical. Peptide mapping studies of the radical adducts and direct EPR studies at low temperature and room temperature support the conclusions of the EPR spin trapping studies.  相似文献   

6.
The anticancer drug adriamycin binds iron and these complexes cycle to reduce molecular oxygen (Zweier, J. L. (1984) J. Biol. Chem. 259, 6056-6058). Optical absorption, EPR, and M?ssbauer spectroscopic data are correlated with polarographic O2 consumption and chemical Fe2+ extraction measurements in order to characterize each step in this cycle. Fe3+ binds to adriamycin at physiologic pH forming a complex with an optical absorbance maximum at 600 nm. EPR signals at g = 4.2 and g = 2.01, and a doublet M?ssbauer spectrum with isomer shift delta = 0.57 mm/s and quadrupole splitting delta EQ = 0.74 mm/s are observed indicating that the Fe3+ bound to adriamycin is high spin S = 5/2. Under anaerobic conditions the absorbance maximum at 600 nm decreases with an exponential decay constant = 0.77 h-1, and the EPR and M?ssbauer spectra of Fe3+-adriamycin similarly decrease as the Fe3+ is reduced to EPR silent Fe2+. The Fe2+-adriamycin complex which is formed exhibits a M?ssbauer spectrum with delta = 1.18 mm/s and delta EQ = 1.82 mm/s indicative of high spin Fe2+. As the EPR spectra of Fe3+-adriamycin decrease on reduction of the Fe3+ to Fe2+ a signal of the oxidized adriamycin free radical appears at g = 2.004 with line width of 8 G. On exposure to O2 the absorption maximum at 600 nm, the Fe3+ EPR, and the Fe3+ M?ssbauer spectra all return. Polarographic measurements demonstrate that O2 is consumed and that H2O2 is formed. Addition of high affinity Fe2+ chelators block O2 consumption indicating that Fe2+ formation is essential for O2 reduction. This cycle of iron-mediated O2 reduction can explain the formation of the reactive reduced oxygen and adriamycin radicals which are thought to mediate the biological activity of adriamycin.  相似文献   

7.
Prior spin trapping studies reported that H(2)O(2) is metabolized by copper,zinc-superoxide dismutase (SOD) to form (.)OH that is released from the enzyme, serving as a source of oxidative injury. Although this mechanism has been invoked in a number of diseases, controversy remains regarding whether the hydroxylation of spin traps by SOD is truly derived from free (.)OH or (.)OH scavenged off the Cu(2+) catalytic site. To distinguish whether (.)OH is released from the enzyme, a comprehensive EPR investigation of radical production and the kinetics of spin trapping was performed in the presence of a series of structurally different (.)OH scavengers including ethanol, formate, and azide. Although each of these have similar potency in scavenging (.)OH as the spin trap 5, 5-dimethyl-1-pyrroline-N-oxide and form secondary radical adducts, each exhibited very different potency in scavenging (.)OH from SOD. Ethanol was 1400-fold less potent than would be expected for reaction with free (.)OH. The anionic scavenger formate, which readily accesses the active site, was still 10-fold less effective than would be predicted for free (.)OH, whereas azide was almost 2-fold more potent than would be predicted. Analysis of initial rates of adduct formation indicated that these reactions did not involve free (.)OH. EPR studies of the copper center demonstrated that while high H(2)O(2) concentrations induce release of Cu(2+), the magnitude of spin adducts produced by free Cu(2+) was negligible compared with that from intact SOD. Further studies with a series of peroxidase substrates demonstrated that characteristic radicals formed by peroxidases were also efficiently generated by H(2)O(2) and SOD. Thus, SOD and H(2)O(2) oxidize and hydroxylate substrates and spin traps through a peroxidase reaction with bound (.)OH not release of (.)OH from the enzyme.  相似文献   

8.
OBJECTIVE: A new co-culture system of rat articular chondrocytes and synoviocytes (HIG-82; cell line) was incubated with phorbol myristate acetate (PMA), H2O2 or a combination of Fe2+ and ascorbic acid to simulate inflammation-like radical attacks in articular joints. METHODS: Chondrocytes were characterized by immunocytochemistry against collagen type II, transmission electron (TEM) and light microscopy. Lipid peroxidation was investigated by measuring thiobarbituric-acid-reactive material in the supernatants, cytotoxicity by determining release of lactate dehydrogenase and proliferation by measuring [3H]thymidine incorporation, culture protein and DNA. RESULTS: PMA or Fe2+ and ascorbic acid induced lipid peroxidation in chondrocytes and synoviocytes that was decreased significantly in co-cultures. PMA and H2O2 dose dependently induced release of lactate dehydrogenase in chondrocytes, which was lowered in co-cultures or in previously co-cultured chondrocytes to a nearly basal level. In contrast, conditioned media of synoviocyte cultures showed no lowering effect on the radical-induced toxicity. Protection against H2O2-induced damage of cellular membranes by co-culturing was also shown by TEM. Synoviocytes released chondrocyte-stimulating growth factors spontaneously without previous interaction. CONCLUSION: Chondrocytes establish protective mechanisms against reactive oxygen species via an interaction with synoviocytes. Our co-culture model presents a possible way to study mechanisms of inflammation in articular joints under defined conditions.  相似文献   

9.
In the absence of suitable oxidizable substrates, the peroxidase reaction of copper-zinc superoxide dismutase (SOD) oxidizes SOD itself, ultimately resulting in its inactivation. A SOD-centered free radical adduct of 2-methyl-2-nitrosopropane (MNP) was detected upon incubation of SOD with the spin trap and a hydroperoxide (either H(2)O(2) or peracetic acid). Proteolysis by Pronase converted the anisotropic electron paramagnetic resonance (EPR) spectrum of MNP/(center dot)SOD to a nearly isotropic spectrum with resolved hyperfine couplings to several atoms with non-zero nuclear spin. Authentic histidinyl radical (from histidine + HO(center dot)) formed a MNP adduct with a very similar EPR spectrum to that of the Pronase-treated MNP/(center dot)SOD, suggesting that the latter was centered on a histidine residue. An additional hyperfine coupling was detected when histidine specifically (13)C-labeled at C-2 of the imidazole ring was used, providing evidence for trapping at that atom. All of the experimental spectra were convincingly simulated assuming hyperfine couplings to 2 nearly equivalent nitrogen atoms and 2 different protons, also consistent with trapping at C-2 of the imidazole ring. Free histidinyl radical consumed oxygen, implying peroxyl radical formation. MNP-inhibitable oxygen consumption was also observed when cuprous SOD but not cupric SOD was added to a H(2)O(2) solution. Formation of 2-oxohistidine, the stable product of the SOD-hydroperoxide reaction, required oxygen and was inhibited by MNP. These results support formation of a transient SOD-peroxyl radical.  相似文献   

10.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

11.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

12.
Human synoviocytes, rabbit articular chondrocytes and human skin fibroblasts in culture were examined for their ability to express elastase activity. Latent enzyme activity degrading insoluble elastin was detected in the culture media of the three cell types and was completely abolished by metal chelating agents. Triton X-100 cell extracts were found to degrade a synthetic elastase substrate, N Succinyl-(Ala)3p-nitroanilide (SANA). The SANA-degrading activity of cell extracts could be attributed to a metalloprotease for fibroblasts and synoviocytes (100%) and to a metalloprotease associated with a cysteine protease for chondrocytes (70 and 30% respectively). This SANA-degrading activity was partly due to the combined action of an endo and an exopeptidase. Tumor Necrosis Factor-alpha (TNF-alpha) and Interferon-gamma (IFN-gamma) significantly enhanced the elastin degrading activity present in the culture media of both synoviocytes and chondrocytes. Interleukin-1 beta significantly increased the secretion of elastase by chondrocytes. By contrast, Transforming Growth Factor-beta (TGF-beta) reduced by 80 per cent the secretion of elastinolytic activity by chondrocytes but had not effect on other cell types.  相似文献   

13.
In the Escherichia coli class Ia ribonucleotide reductase (RNR), the best characterized RNR, there is no spectroscopic evidence for the existence of the postulated catalytically essential thiyl radical (R-S(*)) in the substrate binding subunit R1. We report first results on artificially generated thiyl radicals in R1 using two different methods: chemical oxidation by Ce(IV)/nitrilotriacetate (NTA) and laser photolysis of nitric oxide from nitrosylated cysteines. In both cases, EPR spin trapping at room temperature using phenyl-N-t-butylnitrone, and controls with chemically blocked cysteines, has shown that the observed spin adduct originates from thiyl radicals. The EPR line shape of the protein-bound spin adduct is typical for slow motion of the nitroxide moiety, which indicates that the majority of trapped thiyl radicals are localized in a folded region of R1. In aerobic R1 samples without spin trap that were frozen after treatment with Ce(IV)/NTA or laser photolysis, we observed sulfinyl radicals (R-S(*)=O) assigned via their g-tensor components 2.0213, 2.0094, and 2.0018 and the hyperfine tensor components 1.0, 1.1, and 0.9 mT of one beta-proton. Sulfinyl radicals are the reaction products of thiyl radicals and oxygen and give additional evidence for generation of thiyl radicals in R1 by the procedures used.  相似文献   

14.
The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, the precursors for DNA. RNR requires a thiyl radical to activate the substrate. In RNR of eukaryotes (class Ia RNR), this radical originates from a tyrosyl radical formed in reaction with oxygen (O(2)) and a ferrous di-iron center in RNR. The crucian carp (Carassius carassius) is one of very few vertebrates that can tolerate several months completely without oxygen (anoxia), a trait that enables this fish to survive under the ice in small ponds that become anoxic during the winter. Previous studies have found indications of cell division in this fish after 7 days of anoxia. This appears nearly impossible, as DNA synthesis requires the production of new deoxyribonucleotides and therefore active RNR. We have here characterized RNR in crucian carp, to search for adaptations to anoxia. We report the full-length sequences of two paralogs of each of the RNR subunits (R1i, R1ii, R2i, R2ii, p53R2i and p53R2ii), obtained by cloning and sequencing. The mRNA levels of these subunits were measured with quantitative PCR and were generally well maintained in hypoxia and anoxia in heart and brain. We also report maintained or increased mRNA levels of the cell division markers proliferating cell nuclear antigen (PCNA), brain derived neurotrophic factor (BDNF) and Ki67 in anoxic hearts and brains. Electron paramagnetic resonance (EPR) measurements on in vitro expressed crucian carp R2 and p53R2 proteins gave spectra similar to mammalian RNRs, including previously unpublished human and mouse p53R2 EPR spectra. However, the radicals in crucian carp RNR small subunits, especially in the p53R2ii subunit, were very stable at 0°C. A long half-life of the tyrosyl radical during wintertime anoxia could allow for continued cell division in crucian carp.  相似文献   

15.
By the use of EPR spectroscopy, it has been shown that acyl nitroso compounds can act as spin traps for short-lived radicals with the formation of acyl aminoxyl radicals. The reaction was studied for the system benzohydroxamicacid[Ph-C (= O)N(H)] - dimethyl sulfoxide - hydrogen peroxide. The acyl aminoxyl radicals appeared almost immediately when the reaction mixture was irradiated in situ in the EPR cavity with UV light. The trapping reaction involved two photochemical reactions, i.e. the oxidation of the hydroxamic acid to the acyl nitroso compound Ph-C (= O)NO, and the formation of methyl radicals from dimethyl sulfoxide. The EPR spectra are superpositions of the spectra of two species of acyl aminoxyl radicals, i.e. the radicals Ph-C (= O)N(O·)H formed by oxidation of the parent benzohydrox-amic acid, and the radical Ph-C (= O)N(O·)CH3, formed by trapping of methyl radicals.  相似文献   

16.
We recently published electron paramagnetic resonance (EPR) spin trapping results that demonstrated the enzymatic reduction of sulfur mustard sulfonium ions to carbon-based free radicals using an in vitro system containing sulfur mustard, cytochrome P450 reductase, NADPH, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) in buffer (A.A. Brimfield et al., 2009, Toxicol. Appl. Pharmacol. 234:128-134). Carbon-based radicals have been shown to reduce molecular oxygen to form superoxide and, subsequently, peroxyl and hydroxyl radicals. In some cases, such as with the herbicide paraquat, a cyclic redox system results, leading to magnified oxygen free radical concentration and sustained tissue damage. Low mustard carbon radical concentrations recorded by EPR in our in vitro system, despite a robust (4.0mM) sulfur mustard starting concentration, led us to believe a similar oxygen reduction and redox cycling process might be involved with sulfur mustard. A comparison of the rate of mustard radical-POBN adduct formation in our in vitro system by EPR at atmospheric and reduced oxygen levels indicated a sixfold increase in 4-POBN adduct formation (0.5 to 3.0 μM) at the reduced oxygen concentration. That result suggested competition between oxygen and POBN for the available carbon-based mustard radicals. In parallel experiments we found that the oxygen radical-specific spin trap 5-tert-butoxycarbonyl-5-methylpyrroline-N-oxide (BMPO) detected peroxyl and hydroxyl radicals directly when it was used in place of POBN in the in vitro system. Presumably these radicals originated from O(2) reduced by carbon-based mustard radicals. We also showed that reactive oxygen species (ROS)-BMPO EPR signals were reduced or eliminated when mustard carbon radical production was impeded by systematically removing system components, indicating that carbon radicals were a necessary precursor to ROS production. ROS EPR signals were completely eliminated when superoxide dismutase and catalase were included in the complete in vitro enzymatic system, providing additional proof of oxygen radical participation. The redox cycling hypothesis was supported by density functional theory calculations and frontier molecular orbital analysis.  相似文献   

17.
There has been considerable controversy regarding the role of oxygen free radicals as important mediators of cell damage in reperfused myocardium. This controversy regards whether superoxide and hydroxyl free radicals are generated on reperfusion and if these radicals actually cause impaired contractile function. In this study, EPR studies using the spin trap 5,5-dimethyl-1-pyroline-n-oxide (DMPO) demonstrate the formation of .OH and R. free radicals in the reperfused heart. EPR signals of DMPO-OH, aN = aH = 14.9 G, and DMPO-R aN = 15.8 G aH = 22.8 G are observed, with peak concentrations during the first minute of reperfusion. It is demonstrated that these radicals are derived from .O2- since reperfusion in the presence of enzymatically active recombinant human superoxide dismutase markedly reduced the formation of these signals while inactive recombinant human superoxide dismutase had no effect. On reperfusion with perfusate pretreated to remove adventitial iron, the concentration of the DMPO-OH signal was increased 2-fold and a 4-fold decrease in the DMPO-R signal was observed demonstrating that iron-mediated Fenton chemistry occurs. Hearts reperfused with recombinant human superoxide dismutase exhibited improved contractile function in parallel with the marked reduction in measured free radicals. In order to determine if the reperfusion free radical burst results in impaired contractile function, simultaneous measurements of free radical generation and contractile function were performed. A direct relationship between free radical generation and subsequent impaired contractile function was observed. These studies suggest that superoxide derived .OH and R. free radicals are generated in the reperfused heart via Fenton chemistry. These radicals appear to be key mediators of myocardial reperfusion injury.  相似文献   

18.
Because short-lived reactive oxygen radicals such as superoxide have been implicated in a variety of disease processes, methods to measure their production quantitatively in biological systems are critical for understanding disease pathophysiology. Electron paramagnetic resonance (EPR) spin trapping is a direct and sensitive technique that has been used to study radical formation in biological systems. Short-lived oxygen free radicals react with the spin trap and produce paramagnetic adducts with much higher stability than that of the free radicals. In many cases, the quantity of the measured adduct is considered to be an adequate measure of the amount of the free radical generated. Although the intensity of the EPR signal reflects the magnitude of free radical generation, the actual quantity of radicals produced may be different due to modulation of the spin adduct kinetics caused by a variety of factors. Because the kinetics of spin trapping in biochemical and cellular systems is a complex process that is altered by the biochemical and cellular environment, it is not always possible to define all of the reactions that occur and the related kinetic parameters of the spin-trapping process. We present a method based on a combination of measured kinetic data for the formation and decay of the spin adduct alone with the parameters that control the kinetics of spin trapping and radical generation. The method is applied to quantitate superoxide trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO). In principle, this method is broadly applicable to enable spin trapping-based quantitative determination of free radical generation in complex biological systems.  相似文献   

19.
《Free radical research》2013,47(3-6):181-186
By using α-phenyl N-tert-butyl nitrone (PBN) as spin trap molecule and the electron paramagnetic resonance (EPR) technique, we obtained the first direct evidence of in vivo intervention of free radicals during an ischemia (50 minutes) reperfusion phenomenon in kidney of an intact rabbit.

An EPR signal (triplet of doublets) characterized by coupling constants aN = 14.75–15 G and aHs = 2.5–3 G was detected in blood samples. The signal was consistent with a nitroxyl-radical adduct resulting from the spin trapping by PBN of either oxygen-or carbon-centered radicals. Control experiments indicated that the EPR signal was not due to a toxic effect of the spin trap molecule.  相似文献   

20.
Incubation of myeloperoxidase (MPO) with H(2)O(2) in the presence of the spin trap DBNBS (3,5-dibromo-4-nitrosobenzenesulfonic acid) results in the EPR-detectable formation of a partially immobilized protein radical. The radical was only formed in the presence of both MPO and H(2)O(2), indicating that catalytic turnover of the protein is required. The changes in the EPR spectrum of the adduct upon treatment with pronase confirm that the spin trap is bound to a protein residue. These results establish that MPO, like lactoperoxidase [Lardinois, O. M., Medzihradszky, K. F., and Ortiz de Montellano, P. R. (1999) J. Biol. Chem. 274, 35441-35448], reacts with H(2)O(2) to give a protein radical intermediate. The protein radical may have a catalytic role, may be related to covalent binding of the prosthetic heme group to the protein, or may reflect a process that leads to inactivation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号