首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We examined the glycoprotein composition of intestinal goblet cells in jejunal and colonic biopsies obtained from pigs on different diets. Paraffin sections were stained both chemically and with the following horseradish-peroxidase conjugated lectins: Canavalia ensiformis (Con-A), Limulus polyphemus (LPA), Lotus tetragonolobus (LTA), Arachis hypogaea (PNA), Ricinus communis (RCA1), Glycine max (SBA) and Triticum vulgaris (WGA). Using chemical staining procedures, only small quantitative differences were noted between the two organs. With respect to lectin staining, the mucus of the jejunum was characterized by the absence of Con-A binding sites, and colonic mucus consistently exhibited an absence of SBA affinity. After dietary modifications, O-acetyl sialic acid reactivity was lowered in the jejunum but was enhanced in the colon. In the jejunum, the glycoproteins became neuraminidase susceptible, whereas the colon became characterized by the absence of neutral mucins. The affinity for the tested lectins after the different diets was variable, but the most striking effects were observed after the fibreless diet (milk alone). Our data suggest the existence of marked regional variations in goblet-cell mucus and indicate significant differences between the glycoprotein components of the jejunal and colonic mucosa. Furthermore, the biosynthesis of mucins in both regions was altered by even only short-term feeding modifications.  相似文献   

2.
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.  相似文献   

3.
The digestive tract of the tortoise Testudo graeca (Testudines) was investigated by means of light and electron microscopy. The esophagus of T. graeca was lined by two types of epithelium: non-keratinized stratified squamous in the upper portion and stratified columnar in the lower. The lamina propria of the esophagus contained tubular or tubuloacinar glands. The mucosa of the stomach showed similar characteristics to those of other reptiles. The small intestine exhibited longitudinal folds lined by absorptive and goblet cells. The large intestine was lined by columnar mucous cells. Within the lamina propria of the large intestine, masses of 10–15 epithelial cells connecting with the surface epithelium by means of slender cytoplasmic processes were observed. A battery of six lectins (Con-A, PNA, WGA, DBA, SBA, and LTA) was used to identify the epithelial mucins. WGA and DBA reacted with all types of mucous cells throughout the alimentary canal. PNA was only unreactive in the intestine, LTA in the esophagus, and SBA in the large intestine. These results indicate a similar lectin-binding pattern throughout the gut of T. graeca.  相似文献   

4.
The mucin composition of the rat distal colonic pre-epithelial mucus layer (PML) was studied by lectin histochemistry in conventional (CV), and germ-free (GF) rats to define effects exerted by the gut flora. No peanut agglutinin (PNA) binding was observed in the PML of GF rats, while the PML of their CV counterparts showed a considerable PNA linkage, indicating terminal Gal-beta1,3-GalNAc residues. Soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) stained the PML mucins in CV and in GF rats, indicating terminal GalNAc moieties. A quantitative difference in the Limax flavus agglutinin (LFA) binding capacity was found between CV and GF rats, indicating terminal sialic acid moieties: the staining intensity of bound LFA/ FiTC was higher in CV rats than in GF rats. No linkage of Datura stramonium agglutinin (DSA) and of wheat germ agglutinin (WGA) was found in the PML of GF rats, indicating the absence of terminal GlcNAc, while in CV rats, a clearly marked border was visible next to the luminal content as a "nipple edge" when stained with DSA or WGA. Canavalia ensiformis agglutinin (ConA), indicative for branched mannose, stained PML mucins and goblet cell mucins of GF rat distal colon. In CV rats, both locations were free of ConA binding sites. These results suggest degrading effects, exerted by the gut flora on the rat colonic pre-epithelial mucus layer.  相似文献   

5.
Summary The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats, were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively stranges lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

6.
Summary The glycoconjugates of the extrapulmonary airways of 11 tetrapode vertebrates have been characterized by means of both conventional and lectin histochemistry. Abundant sialosulphomucins were detected in the secretory cells and periciliary layer of turtles, snakes, birds and mammals while only sialomucins were observed in amphibians. Neutral and traces of acidic mucins were detected in the secretory cells of lizards. The secretory cells of the amphibian airways were reactive to Con-A, DBA and WGA. No -l-fucose residues reactive with UEA-I or LTA were detected in amphibians. The goblet cells of the turtles were stained by DBA, SBA and WGA. Secretory cells of snakes and lizards reacted with Con-A and WGA. The mucous goblet cells of the birds were reactive to Con-A, LTA and WGA. In the chicken, they also showed affinity for PNA and SBA. The ciliated cells ofthe avian species studied were stained by Con-A and WGA. Mammalian goblet cells were reactive to Con-A, UEA-I and WGA. In the rat, affinity for DBA and SBA was also observed. The present results reveal the existence of marked differences in the sugar residues of the glycoconjugates of the extrapulmonary airways of tetrapode vertebrates. Only sialic acid residues appear to be constant constituents of the glycoconjugates of the airways of all species studied.  相似文献   

7.
Rats maintained with parenteral nutrition following 60% jejunoileal resection plus cecectomy exhibit minimal adaptive growth in the residual jejunum but a dramatic adaptive growth in the residual colon. Coinfusion of insulin-like growth factor I (IGF-I) with parenteral nutrition induces jejunal growth but has minimal effects in the colon. Our objective was to study the role of the endogenous IGF-I system in the differential responses of jejunum and colon to resection and/or IGF-I during parenteral nutrition. We measured concentrations of immunoreactive IGF-I in plasma, jejunum, and colon, IGF-I receptor binding, and levels of IGF receptor, IGF-I, IGF binding protein (IGFBP)-3 and IGFBP-5 mRNA in residual jejunum and colon 7 days after resection and/or IGF-I treatment. IGF-I receptor number was increased (74-99%) in jejunum and colon due to resection; IGF-I mRNA was increased 5-fold in jejunum and 15-fold in colon due to resection. Resection increased circulating IGFBPs but did not alter plasma IGF-I concentration. Resection induced colonic growth in association with significantly greater colonic IGFBP-5 mRNA and significantly lower colonic immunoreactive IGF-I. IGF-I treatment had no significant effect on IGF-I mRNA or IGF-I receptor number. Concentrations of plasma and jejunal immunoreactive IGF-I were significantly increased in rats given IGF-I in association with jejunal growth. IGF-I treatment significantly increased IGFBP-5 mRNA in the jejunum, which also correlated with jejunal growth. Thus resection upregulated IGF-I receptor number and IGF-I mRNA in residual jejunum and colon, but differential adaptation of these segments correlated with differential regulation of IGFBP-5 mRNA.  相似文献   

8.
Summary Taste buds (TB) in the foliate, circumvallate and fungiform papillae of the rabbit tongue were examined with lectin histochemistry by means of light (LM) and electron (EM) microscopy. Biotin- and gold-labeled lectins were used for the detection of carbohydrate residues in TB cells and subcutaneous salivary glands. At the LM level, the lectins of soybean (SBA) and peanut (PNA) react with material of the foliate and circumvallate taste pores only after pretreatment of the section with neuraminidase. This indicates that the terminal trisaccharide sequences are as follows: Sialic acid-Gal-GalNAc in O-glycosylated glycoproteins or Sialic acid-Gal-GlcNAc in N-glycosylated glycoproteins. In fungiform taste buds the lectins of Dolichos biflorus (DBA) and Helix pomatia (HPA), also specific to GalNAc residues, are reactive without preincubation with neuraminidase. Wheat germ agglutinin (WGA), specific to GlcNAc, reacts with TBs of all papillae; and the lectin from Ulex europaeus (UEA I), specific to fucose, binds to individual TB cells. The presence of sialic acid may protect mucus or other glycoproteins in TB cells and inside the taste pore from premature enzymatic degradation. In a post-embedding EM procedure on LR-White-embedded tissue sections, only gold-labeled HPA was found to bind especially on membrane surfaces of the microvilli which protrude into the taste pore; however HPA did not bind to the electron-dense mucus inside the taste pore. The mucus situated in the trough and at the top of the adjacent epithelial cells also is strongly HPA-positive, but is of different origin and composition than that found in the taste pore. These results demonstrate distinct carbohydrate histochemical differences between fungiform and circumvallate/foliate taste buds. The different configuration of galactosyl residues and the occurrence of mannose in circumvallate and foliate TBs leads to the suggestion that the lectin reactivities of TBs are not only due to the presence of mucins, but also to N-linked glycoproteins, possibly with a hormone-like, paraneuronal function. A possible relationship to v. Ebner glands in these papillae is discussed.  相似文献   

9.
Mucins secreted from the gastrointestinal epithelium form the basis of the adherent mucus layer which is the host's first line of defense against invasion by Entamoeba histolytica. Galactose and N-acetyl-D-galactosamine residues of mucins specifically inhibit binding of the amebic 170 kDa heavy subunit Gal-lectin to target cells, an absolute prerequisite for pathogenesis. Herein we characterized the secretory mucins isolated from the human colon and from three human colonic adenocarcinoma cell lines: two with goblet cell-like (LS174T and T84) and one with absorptive cell-like morphology (Caco-2). By Northern blot analysis the intestinal mucin genes MUC2 and MUC3 were constitutively expressed by confluent LS174T and Caco-2 cells, whereas T84 cells only transcribed MUC2 and not MUC3 mRNA. 3H-glucosamine and 3H-threonine metabolically labeled proteins separated as high Mr mucins in the void (Vo > 106 Da) of Sepharose-4B column chromatography and remained in the stacking gel of SDS-PAGE as depicted by fluorography. All mucin preparations contained high amounts of N-acetyl-glucosamine, galactose, N-acetyl-galactosamine, fucose and sialic acid, saccharides typical of the O-linked carbohydrate side chains. Mucin samples from the human colon and from LS174T and Caco-2 cells inhibited E. histolytica adherence to Chinese hamster ovary cells, whereas mucins from T84 cells did not. These results suggest that genetic heterogeneity and/or posttranslational modification in glycosylation of colonic mucins can affect specific epithelial barrier function against intestinal pathogens.  相似文献   

10.
Summary Taste buds in the European catfish Silurus glanis were examined with electron microscopic lectin histochemistry. For detection of carbohydrate residues in sensory cells and adjacent epithelial cells, gold-, ferritin-and biotin-labeled lectins were used. A post-embedding procedure carried out on tissue sections embedded in LR-White was applied to differentiate between the sensory cells: The lectins from Helix pomatia (HPA) and Triticum vulgare (WGA) bound to N- acetyl-galactosamine and to N-acetylglucosamine residues occurring especially in vesicles of dark sensory cells. This indicates a secretory function of these cells. Most light sensory cells — with some exceptions, probably immature cells —, are HPA-negative. The mucus of the receptor field and at the top of the adjacent epithelial cells was strongly HPA-positive. Pre-embedding studies were performed in order to obtain information about the reaction of the mucus with lectins under supravital conditions. The mucus of the taste bud receptor field exhibited intensive binding to WGA, but not to the other lectins tested. Most lectins bound predominantly to the surface mucus of the nonsensory epithelium and to the marginal cells close to the receptor field. The strong lectin binding to mucins and the relatively weak lectin binding to cell surface membranes in pre-embedding studies suggest that the mucus possibly serves as a barrier which is passed selectively only by a small amount of lectins or lectincarbohydrate complexes. Lectin-carbohydrate interactions may play a role in recognition phenomena on the plasmalemmata of the taste bud sensory cells. Recognition processes directed to bacteria or viruses should be considered as well.Parts of this investigation were presented at the XI. Annual Meeting of the Association for Chemoreception Sciences (AChemS XI), held at Sarasota, Fl, April 12–14, 1989 (Witt and Reutter 1989)  相似文献   

11.
Summary Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheat-germ agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(1–3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosac-charide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

12.
Aqueous extracts from rabbit colon, kidney, testis and small intestinal mucosa were prepared by homogenization and centrifugation at 105,000 g. After precipitation with ammonium sulphate. the 0–50 fraction (F1) and the supernatant (F2) were collected, dialysed against a phosphate buffer and tested on mice in vivo. 1 hr after a single injection of F1 (15 mg content) from colon, the uptake of tritiated thymidine was decreased in jejunal and colonic DNA in mice. This effect, maximal after 3 hr and totally reversible after 7 hr, was found in neither the kidney nor the testis. the F1 fractions of non-digestive organs (kidney, testis) were also found to exert a significant inhibition on thymidine incorporation into intestinal DNA in vivo. F1 fractions of intestinal contents, prepared under the same conditions, exerted no significant effects on DNA synthesis in mouse intestine. Conversely, the colon F2 fraction did not inhibit the synthesis of jejunal and colonic DNA in vivo. A slowing of cellular migration was also noticed in the jejunum and colon of mice injected with colon or small intestine F1, as ascertained radioautographically by determining the position of the leading edge of the labelled cells in jejunal or colonic F1-injected mice. Our results suggest that the F1 fraction of the aqueous extract of rabbit colon contains one or more substances, which may act either on intestinal DNA synthesis or on the G1-S transition of the cellular cycle in the mouse intestine. This reversible and tissue-specific intestinal action appears to inhibit cell proliferation and presents several of the characteristics defining a chalone, as does the action of small intestinal F1 previously reported (Sassier & Bergeron, 1977). However, because of a relative lack of origin specificity of this effect, the physiological significance of our data remains to be ascertained.  相似文献   

13.
《Journal of morphology》2017,278(12):1606-1618
The ascending colon of most rodent species shows a longitudinal colonic groove that works as a retrograde transport pathway for a mixture of bacteria and mucus toward the cecum. We describe the morphology and glycosylation pattern of the colonic groove of Lagostomus maximus to analyze the role of mucins in this anatomical feature. We also studied the distribution pattern of the interstitial cells of Cajal (ICC) to evaluate their regulatory influence on gut motility. The groove originated near the cecocolic junction and extended along the mesenteric side of the ascending colon, limited at both ends by nonpapillated ridges. These ridges divided the lumen of the ascending colon into two compartments: a narrow channel and a large channel, called the groove lumen and the main lumen, respectively. The histochemical analysis showed differences in the glycosylation pattern of the goblet cells inside and outside the groove. Unlike the mucosa lining the main lumen of the colon, the groove was rich in goblet cells that secrete sulfomucins. The PA/Bh/KOH/PAS technique evidenced an abrupt change in the histochemical profile of goblet cells, which presented a negative reaction in the groove and a strongly positive one in the rest of the colonic mucosa. The anti‐c‐kit immunohistochemical analysis showed different ICC subpopulations in the ascending colon of L. maximus . Of all types identified, the ICC‐SM were the only cells located solely within the colonic groove.  相似文献   

14.
In vivo glycoprotein synthesis and secretion was studied in rat colonic epithelial cells using precursor labelling with radiolabelled glucosamine. Sepharose 4B gel filtration of radiolabelled glycoproteins obtained from isolated colonic epithelial cells revealed two major fractions: (1) high molecular weight mucus in the excluded fraction and (2) lower molecular weight glycoproteins in the included volume. These glycoproteins were further fractionated by affinity chromatography on concanavalin A-Sepharose. The low molecular weight [3H]glucosamine-labelled glycoproteins contained a major subfraction which specifically adhered to concanavalin A, and could be eluted with 0.2 M α-methylmannoside. Fractionation of the concanavalin A-reactive glycoproteins on Sephadex G-100 revealed a major peak with a molecular weight of 15 000. In contrast, high molecular weight mucus glycoprotein did not adhere appreciably to concanavalin A-Sepharose. Perfusion experiments indicated that colonic secretions contained both mucus and concanavalin A-reactive glycoproteins. The major concanavalin A-reactive glycoprotein in the colonic perfusate was not derived from serum, but was released directly from the colonic membrane into the lumen.  相似文献   

15.
Summary The thickness of the pre-epithelial mucus layer has been measured in different gut segments of rats kept under normal (ad libitum) feeding conditions, and after 48 h of fasting, using cryostat sections and celloidin stabilization from samples containing luminal contents. The mucus layer of the stomach, duodenum, jejunum, ileum, caecum, proximal colon, colon transversum, distal colon and rectum was studied in five groups of male rats (10, 40, 70 and 150 days of age, and older). Underad libitum feeding conditions, a distinct and continuous mucus layer, with a thickness of more than 3 μm, was only observed in the colon transversum, in the distal colon, in the rectum and in the stomach. No pre-epithelial mucus layer was observed in the duodenum and jejunum where the glycocalix from the apical membrane of the superficial cells appeared to be in a direct contact with the luminal ingesta. In the ileum, caecum and the proximal colon, the surface epithelium of the mucosa was only partly covered by a mucus layer of highly variable thickness. After 48 h of fasting, a mucus layer of 28.8 ± 25.6 μm and 93.3 ± 59.4 μm thickness, respectively, was found in the duodenum and jejunum of adult rats, but no increase in the thickness of the mucus layer was observed in the rat hind gut.  相似文献   

16.
Mucins are high molecular weight epithelial proteins, strongly glycosylated, and are the main component of the mucus. Since mucus secretion can be altered in diseases, colon mucins can be regarded as a biomarker of chronic inflammatory bowel diseases or preneoplastic changes. Conventional histochemistry and lectin histochemistry combined with chemical treatment and enzymatic digestion were carried out to analyze the colon mucins in mice fed a high-fat diet for 25 weeks, a period sufficient to induce simple liver steatosis, to check whether the carbohydrate features of mucus can be altered by an inadequate diet. An increase in the sialo/sulfomucins ratio with respect to control mice, assessed by computerized image analysis, was observed in the colon, although differences in sialic acid acetylation between control and mice fed a high-fat diet were not found. High-fat diet was also associated with altered lectin-binding pattern of the mucus, with a probable shortening of oligosaccharide chains of glycoproteins. This pattern was leading to over-expression of Galβ1,3GalNAc terminal dimers (TF antigen) and GalNAc terminal residues (Tn antigen). This altered composition of mucins can be related to a defect in the process of glycosylation, or to incomplete maturation of goblet cells, and may be an early indication of preneoplastic and neoplastic changes. In conclusion, our findings confirm that a fatty-rich diet (Western-style diet) induces alteration of mucins and may be associated with colon diseases. Our investigation corroborates the usefulness of lectins histochemistry in the early diagnosis of prepathological states of the colon.  相似文献   

17.
Normal human gastric epithelial cells were examined by electron microscopy using each of five biotinylated lectins [Ulex europaeus agglutinin I (UEA-I), peanut agglutinin (PNA), wheat germ agglutinin (WGA), soybean agglutinin (SBA) andDolichos biflorus agglutinin (DBA)] as a probe. We employed 35 gastric surgical specimens removed from complicated peptic disease. The lectin-binding sites were revealed with streptavidin-colloidal gold complex. All specimens were embedded in Spurr and LR White resins. In superficial foveolar epithelial cells, the lectins used were generally positive in all cell types (mainly UEA-1 and PNA) on the Golgi region and mucus cytoplasmic vacuoles, with many variations among cells in the same case. On the other hand, extracellular mucus was negative for WGA. Labelling with PNA revealed a biphasic pattern (peripheral positivity) on mucous droplets in surface and foveolar cells. Thecis side of the Golgi apparatus was labelled with SBA and PNA and rough endoplasmic reticulum with SBA (only five cases). Lectin-binding variability could be related to heterogeneous composition of gastric mucus. Our results with SBA suggest initiation ofO-glycosylation at the Golgi apparatus; however a role of the rough endoplasmic reticulum cannot be excluded (N-glycosylation). We propose the following sequence of sugar addition to the carbohydrate side-chains of gastric glycoproteins: (1) GaNAc (Golgi apparatuscis-side), (2) GlcNAc (Golgi apparatus intermediate face), (3) GalNac or Gal, -l-fucose (Golgi apparatustrans-side).Supported by a grant from Junta de Andalucía (Consolidación de Grupos de Investigación. Ref. 541A.6.60.609.018311)  相似文献   

18.
Summary Secretory products of granular and mucous cells in the gill epithelium of the carp, Cyprinus carpio, were distinguished by their cytochemical reactions with peroxidase-labelled lectins and with the galactose oxidase (GO)-Schiff reagents. Secretory products of granular cells reacted with lectins from Triticum vulgaris (WGA), Arachis hypogaea (PNA), Dolichos biflorus (DBA), Glycine max (SAB), and Lotus tetragonolobus (LTA). They also reacted with GO-Schiff reagents. After sialic acid cleavage with HCl, new binding sites for DBA and SBA appeared, suggesting the terminal sequence sialic acid-N-acetylgalactosamine (SA-GalNAc) for the secretion of this cell type. In mucous cells, binding sites for WGA, DBA, and SBA and, after acid hydrolysis, binding sites for PNA and a positive GO-Schiff reaction were detected. The terminal trisaccharide sialic acid-galactose (1-3)-N-acetylgalactosamine (SA-Gal-GalNAc) is proposed for the secretion of mucuous cells. These cytochemical differences are discussed in light of the involvement of both cell types in fish mucus elaboration.  相似文献   

19.
The anlage of duodenum, ileum and colon were removed from chick embryos of day 8-21 of incubation and from 1-day-old chicks. A battery of seven different horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, Con A, WGA, LTA and UEAI) was used to study the carbohydrate residues of the glycoconjugates in the goblet cells of the three parts of the intestine. The main results can be summarized as follows: differences in lectin binding were absent in the proximal and distal parts of the duodenum, ileum and colon. Lectin histochemistry showed differences among the three intestinal segments for the time of appearance of the oligosaccharides in the goblet mucus. In the colonic goblet cells of 1-day-old chicks, LTA and UEAI lectins showed two different types of linkage of alpha-L-fucose. This is the first demonstration of UEAI reactive sites in Gallus domesticus.  相似文献   

20.
We performed an investigation at the light microscopical level of the differential distribution of lectin-binding sites among cells of the epidermis and glandular domains of the African clawed frog Xenopus laevis. Using a panel of biotinylated lectins (Con-A. PSA, LCA, UEA-I, DBA, SBA, SJA, RCA-I, BSL-I, WGA, s-WGA, PHA-E and PHA-L) and an avidin–biotin–peroxidase complex (ABC), we have identified specific binding patterns. The results show that expression of saccharide moieties in Xenopus epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different sugar residues. Moreover, oliogosaccharides with “identical” biochemically defined sugar compositions can be distinguished. The method allowed further characterization of complex glycoconjugates of dermal glands. In view of these results, the ABC technique and the biotinylated lectins employed in the present study are believed to be a reliable method for the precise localization of saccharide residues of glycoconjugates present in ectothermic vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号