首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1.  相似文献   

2.
Kringle 5 causes cell cycle arrest and apoptosis of endothelial cells.   总被引:26,自引:0,他引:26  
Angiostatin which contains the first four kringle domains of plasminogen has been documented to be a potent inhibitor of angiogenesis. More recently, another kringle structure within plasminogen but outside angiostatin, known as kringle 5 (K5), was found to inhibit endothelial cell proliferation and migration. Here, we report the cloning and expression of mouse kringle 5 (rK5) in a bacterial expression system. The protein was purified to homogeneity using a Ni-NTA column. rK5 inhibited both proliferation and migration of endothelial cells with ED50's of 10 nM and < 500 nM, respectively. In addition, we show for the first time that rK5 causes cell cycle arrest and apoptosis, shedding further insight into rK5's mechanism of action. Finally, we show that these actions are endothelial cell specific.  相似文献   

3.
Plasmin is processed in the conditioned medium of HT1080 fibrosarcoma cells producing fragments with the domain structures of the angiogenesis inhibitor, angiostatin, and microplasmin. Angiostatin consists of kringle domains 1-4 and part of kringle 5, while microplasmin consists of the remainder of kringle 5 and the serine proteinase domain. Our findings indicate that formation of angiostatin/microplasmin involves reduction of plasmin by a plasmin reductase followed by proteolysis of the reduced enzyme. We present evidence that the Cys461-Cys540 and Cys511-Cys535 disulfide bonds in kringle 5 of plasmin were reduced by plasmin reductase. Plasmin reductase activity was secreted by HT1080 and Chinese hamster ovary cells and the human mammary carcinoma cell lines MCF-7, MDA231, and BT20 but not by the monocyte/macrophage cell line THP-1. Neither primary foreskin fibroblasts, blood monocyte/macrophages, nor macrovascular or microvascular endothelial cells secreted detectable plasmin reductase. In contrast, cultured bovine and rat vascular smooth muscle cells secreted small but reproducible levels of plasmin reductase. Reduction of the kringle 5 disulfide bonds triggered cleavage at either Arg529-Lys530 or two other positions C-terminal of Cys461 in kringle 5 by a serine proteinase. Plasmin autoproteolysis could account for the cleavage, although another proteinase was mostly responsible in HT1080 conditioned medium. Three serine proteinases with apparent Mr of 70, 50, and 39 were purified from HT1080 conditioned medium, one or more of which could contribute to proteolysis of reduced plasmin.  相似文献   

4.
Angiostatin, a circulating inhibitor of angiogenesis, was identified by its ability to maintain dormancy of established metastases in vivo. In vitro, angiostatin inhibits endothelial cell migration, proliferation, and tube formation, and induces apoptosis in a cell type-specific manner. We have used a construct encoding the kringle domains 1--4 of angiostatin to screen a placenta yeast two-hybrid cDNA library for angiostatin-binding peptides. Here we report the identification of angiomotin, a novel protein that mediates angiostatin inhibition of migration and tube formation of endothelial cells. In vivo, angiomotin is expressed in the endothelial cells of capillaries as well as larger vessels of the human placenta. Upon expression of angiomotin in HeLa cells, angiomotin bound and internalized fluorescein-labeled angiostatin. Transfected angiomotin as well as endogenous angiomotin protein were localized to the leading edge of migrating endothelial cells. Expression of angiomotin in endothelial cells resulted in increased cell migration, suggesting a stimulatory role of angiomotin in cell motility. However, treatment with angiostatin inhibited migration and tube formation in angiomotin-expressing cells but not in control cells. These findings indicate that angiostatin inhibits cell migration by interfering with angiomotin activity in endothelial cells.  相似文献   

5.
Tissue-type plasminogen activator (tPA) is a multidomain serine protease that converts the zymogen plasminogen to plasmin. tPA contains two kringle domains which display considerable sequence identity with those of angiostatin, an angiogenesis inhibitor. TK1-2, a recombinant kringle domain composed of t-PA kringles 1 and 2 (Ala(90)-Thr(263)), was produced by both bacterial and yeast expression systems. In vitro, TK1-2 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, and epidermal growth factor. It did not inhibit proliferation of non-endothelial cells. TK1-2 also inhibited in vivo angiogenesis in the chick embryo chorioallantoic membrane model. These results suggest that the recombinant kringle domain of t-PA is a selective inhibitor of endothelial cell growth and identifies this molecule as a novel anti-angiogenic agent.  相似文献   

6.
Interactions of the developmentally regulated chondroitin sulfate proteoglycan NG2 with human plasminogen and kringle domain-containing plasminogen fragments have been analyzed by solid-phase immunoassays and by surface plasmon resonance. In immunoassays, the core protein of NG2 binds specifically and saturably to plasminogen, which consists of five kringle domains and a serine protease domain, and to angiostatin, which contains plasminogen kringle domains 1-3. Apparent dissociation constants for these interactions range from 12 to 75 nm. Additional evidence for NG2 interaction with kringle domains comes from its binding to plasminogen kringle domain 4 and to miniplasminogen (kringle domain 5 plus the protease domain) with apparent dissociation constants in the 18-71 nm range. Inhibition of plasminogen and angiostatin binding to NG2 by 6-aminohexanoic acid suggests that lysine binding sites are involved in kringle interaction with NG2. The interaction of NG2 with plasminogen and angiostatin has very interesting functional consequences. 1) Soluble NG2 significantly enhances the activation of plasminogen by urokinase type plasminogen activator. 2) The antagonistic effect of angiostatin on endothelial cell proliferation is inhibited by soluble NG2. Both of these effects of NG2 should make the proteoglycan a positive regulator of the cell migration and proliferation required for angiogenesis.  相似文献   

7.
Angiostatin, a potent inhibitor of angiogenesis, is derived from the fibrinolytic proenzyme, plasminogen, by enzymatic processing. Plasminogen N-terminal activation peptide (PAP) is one of the products concomitantly released aside from angiostatin (kringles 1-4) and mini-plasminogen (kringle 5 plus the catalytic domain) when plasminogen is processed. To determine whether PAP alone or together with the angiostatin-related peptides derived from the processing of plasminogen modulate the proliferation and motility of endothelial cells, we have generated a recombinant PAP and used it to study its effects on endothelial cells in the presence and absence of the angiostatin-related peptides. Our results showed that PAP alone slightly increased the migration but not the proliferation of endothelial cells. However, in the presence of the angiostatin-related peptides, PAP attenuated the inhibitory activity of the angiostatin-related peptides on the proliferation and migration of endothelial cells. The inhibitory effect of PAP on the angiostatin-related peptides could be due to its binding to the kringle domains of the latter peptides.  相似文献   

8.
betaig-h3 is an extracellular matrix protein that mediates adhesion and migration of several cell types through interaction with integrins. In the present study, we tested whether betaig-h3 mediates endothelial cell adhesion and migration, thereby regulating angiogenesis. In this study, we demonstrate that not only betaig-h3 itself but also all four fas-1 domains of betaig-h3 mediate endothelial cell adhesion and migration through interaction with the alphavbeta3 integrin. We found that the alphavbeta3 integrin-interacting motif of the four fas-1 domains of betaig-h3 is the same YH motif that we reported previously to interact with alphavbeta5 integrin. The YH peptide inhibited endothelial cell adhesion and migration in a dose-dependent manner. We demonstrate that the YH peptide has anti-angiogenic activity in vitro and in vivo using an endothelial cell tube formation assay and a Matrigel plug assay, respectively. Our results reveal that betaig-h3 bears alphavbeta3 integrin-interacting motifs that mediate endothelial cell adhesion and migration and, therefore, may regulate angiogenesis.  相似文献   

9.
Tumor growth requires the development of new vessels that sprout from pre-existing normal vessels in a process known as "angiogenesis" [Folkman (1971) N Engl J Med 285:1182-1186]. These new vessels arise from local capillaries, arteries, and veins in response to the release of soluble growth factors from the tumor mass, enabling these tumors to grow beyond the diffusion-limited size of approximately 2 mm diameter. Angiostatin, a naturally occurring inhibitor of angiogenesis, was discovered based on its ability to block tumor growth in vivo by inhibiting the formation of new tumor blood vessels [O'Reilly et al. (1994a) Cold Spring Harb Symp Quant Biol 59:471-482]. Angiostatin is a proteolytically derived internal fragment of plasminogen and may contain various members of the five plasminogen "kringle" domains, depending on the exact sites of proteolysis. Different forms of angiostatin have measurably different activities, suggesting that much remains to be elucidated about angiostatin biology. A number of groups have sought to identify the native cell surface binding site(s) for angiostatin, resulting in at least five different binding sites proposed for angiostatin on the surface of endothelial cells (EC). This review will consider the data supporting all of the various reported angiostatin binding sites and will focus particular attention on the angiostatin binding protein identified by our group: F(1)F(O) ATP synthase. There have been several developments in the quest to elucidate the mechanism of action of angiostatin and the regulation of its receptor. The purpose of this review is to describe the highlights of research on the mechanism of action of angiostatin, its' interaction with ATP synthase on the EC surface, modulators of its activity, and issues that should be explored in future research related to angiostatin and other anti-angiogenic agents.  相似文献   

10.
Angiostatin, the N-terminal four kringles (K1-4) of plasminogen, blocks tumor-mediated angiogenesis and has great therapeutic potential. However, angiostatin's mechanism of anti-angiogenic action is unclear. We found that bovine arterial endothelial (BAE) cells adhere to angiostatin in an integrin-dependent manner and that integrins alpha(v)beta(3), alpha(9)beta(1), and to a lesser extent alpha(4)beta(1), specifically bind to angiostatin. alpha(v)beta(3) is a predominant receptor for angiostatin on BAE cells, since a function-blocking antibody to alpha(v)beta(3) effectively blocks adhesion of BAE cells to angiostatin, but an antibody to alpha(9)beta(1) does not. epsilon-Aminocaproic acid, a Lys analogue, effectively blocks angiostatin binding to BAE cells, indicating that an unoccupied Lys-binding site of the kringles may be required for integrin binding. It is known that other plasminogen fragments containing three or five kringles (K1-3 or K1-5) have an anti-angiogenic effect, but plasminogen itself does not. We found that K1-3 and K1-5 bind to alpha(v)beta(3), but plasminogen does not. These results suggest that the anti-angiogenic action of angiostatin may be mediated via interaction with alpha(v)beta(3). Angiostatin binding to alpha(v)beta(3) does not strongly induce stress-fiber formation, suggesting that angiostatin may prevent angiogenesis by perturbing the alpha(v)beta(3)-mediated signal transduction that may be necessary for angiogenesis.  相似文献   

11.
Angiostatin protein, which comprises the first four kringle domains of plasminogen, is an endogenous inhibitor of angiogenesis that inhibits the growth of experimental primary and metastatic tumors. Truncation of Angiostatin K1-4 to K1-3 retained the activity of Angiostatin. We recombinantly expressed full-length human Angiostatin protein corresponding to the first four kringle domains of human plasminogen and a truncated form of the Angiostatin protein, kringles 1-3. Purified recombinant Angiostatin K1-3 and K1-4 proteins inhibited the formation of experimental B16-BL6 lung metastases by greater than 80% when administered at 30 nmol/kg/day. We demonstrate for the first time that Angiostatin protein, consisting of the first three kringle domains of human plasminogen, has in vivo biological activity in this assay indistinguishable from that of the full-length Angiostatin K1-4 protein and that the fourth kringle of plasminogen, when linked in sequence to K1-3, plays no direct role in the antitumor activity of Angiostatin.  相似文献   

12.
Angiostatin consisting of the first four-kringle domains of the plasminogen potently inhibits angiogenesis in vitro and in vivo. However, the molecular mechanism of action whereby angiostatin mediates its inhibitory effect on proliferating endothelial cells remains elusive. We therefore used the proliferating cultured human umbilical vein endothelial cells (HUVECs) promoted by vascular endothelial growth factor A to identify the endogenous signaling elements that mediate the antiangiogenic effect of angiostatin. Treatment of HUVEC with angiostatin at a concentration known to inhibit cell proliferation and induce apoptosis resulted in induction of p53-, Bax-, and tBid-mediated release of cytochrome c into the cytosol. In addition, angiostatin also activated the Fas-mediated apoptotic pathway in part via up-regulation of FasL mRNA, down-regulation of c-Flip, and activation of caspase 3. These results suggest that the anti-angiogenic action of angiostatin is likely mediated by two distinct signaling pathways, one intrinsic mediated by p53 while the other extrinsic involved in FasL engagement and mitochondria dysfunction.  相似文献   

13.
CCN1 (CYR61) is a matricellular inducer of angiogenesis essential for successful vascular development. Though devoid of the canonical RGD sequence motif recognized by some integrins, CCN1 binds to, and functions through integrin alphavbeta3 to promote pro-angiogenic activities in activated endothelial cells. In this study we identify a 20-residue sequence, V2 (NCKHQCTCIDGAVGCIPLCP), in domain II of CCN1 as a novel binding site for integrin alphavbeta3. Immobilized synthetic V2 peptide supports alphavbeta3-mediated cell adhesion; soluble V2 peptide inhibits endothelial cell adhesion to CCN1 and the homologous family members CCN2 (connective tissue growth factor, CTGF) or CCN3 (NOV) but not to collagen. These activities are obliterated by mutation of the aspartate residue in the V2 peptide to alanine. The corresponding D125A mutation in the context of the N-terminal half of CCN1 (domains I and II) greatly diminished direct solid phase binding to purified integrin alphavbeta3 and abolished alphavbeta3-mediated cell adhesion activity. Likewise, soluble full-length CCN1 with the D125A mutation is defective in binding purified alphavbeta3 and impaired in alphavbeta3-mediated pro-angiogenic activities in vascular endothelial cells, including stimulation of cell migration and enhancement of DNA synthesis. In contrast, immobilized full-length CCN1-D125A mutant binds alphavbeta3 and supports alphavbeta3-mediated cell adhesion similar to wild type CCN1. These results indicate that V2 is the primary alphavbeta3 binding site in soluble CCN1, whereas additional cryptic alphavbeta3 binding site(s) in the C-terminal half of CCN1 becomes exposed when the protein is immobilized. Together, these results identify a novel and functionally important binding site for integrin alphavbeta3 and provide a new approach for dissecting alphavbeta3-specific CCN1 functions both in cultured cells and in the organism.  相似文献   

14.
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.  相似文献   

15.
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.  相似文献   

16.
The contribution of polymorphonuclear neutrophils (PMN) to host defense and natural immunity extends well beyond their traditional role as professional phagocytes. In this study, we demonstrate that upon stimulation with proinflammatory stimuli, human PMN release enzymatic activities that, in vitro, generate bioactive angiostatin fragments from purified plasminogen. We also provide evidence that these angiostatin-like fragments, comprising kringle domain 1 to kringle domain 3 (kringle 1-3) of plasminogen, are generated as a byproduct of the selective proteolytic activity of neutrophil-secreted elastase. Remarkably, affinity-purified angiostatin kringle 1-3 fragments generated by neutrophils inhibited basic fibroblast growth factor plus vascular endothelial growth factor-induced endothelial cell proliferation in vitro, and both vascular endothelial growth factor-induced angiogenesis in the matrigel plug assay and fibroblast growth factor-induced angiogenesis in the chick embryo chorioallantoic membrane assay, in vivo. These results represent the first demonstration that biologically active angiostatin-like fragments can be generated by inflammatory human neutrophils. Because angiostatin is a potent inhibitor of angiogenesis, tumor growth, and metastasis, the data suggest that activated PMN not only act as potent effectors of inflammation, but might also play a critical role in the inhibition of angiogenesis in inflammatory diseases and tumors, by generation of a potent anti-angiogenic molecule.  相似文献   

17.
Plasmin(ogen) kringles 1 and 4 are involved in anchorage of plasmin(ogen) to fibrin and cells, an essential step in fibrinolysis and pericellular proteolysis. Their contribution to these processes was investigated by selective neutralization of their lysine-binding function. Blocking the kringle 1 lysine-binding site with monoclonal antibody 34D3 fully abolished binding and activation of Glu-plasminogen and prevented both fibrinolysis and plasmin-induced cell detachment-induced apoptosis. In contrast, blocking the kringle 4 lysine-binding site with monoclonal antibody A10.2 did not impair its activation although it partially inhibited plasmin(ogen) binding, fibrinolysis and cell detachment. This remarkable, biologically relevant, distinctive response was not observed for plasmin or Lys-plasminogen; each antibody inhibited their binding and activation of Lys-plasminogen to a limited extent, and full inhibition of fibrinolysis required simultaneous neutralization of both kringles. Thus, in Lys-plasminogen and plasmin, kringles 1 and 4 act as independent and complementary domains, both able to support binding and activation. We conclude that Glu-/Lys-plasminogen and plasmin conformations are associated with transitions in the lysine-binding function of kringles 1 and 4 that modulate fibrinolysis and pericellular proteolysis and may be of biological relevance during athero-thrombosis and inflammatory states. These findings constitute the first biological link between plasmin(ogen) transitions and functions.  相似文献   

18.
Alphavbeta3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. Alphavbeta3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of alphavbeta3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-alphavbeta3 that binds recombinant alphavbeta3 integrin, for its ability to bind endogenous alphavbeta3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-alphavbeta3 binds alphavbeta3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-alphavbeta3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-alphavbeta3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-alphavbeta3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation.  相似文献   

19.
We previously reported that mouse orthologue of puromycin insensitive leucyl-specific aminopeptidase (mPILSAP) played an important role in angiogenesis by regulating the proliferation and migration of endothelial cells (ECs) (Miyashita et al., 2002. Blood 99:3241-3249). Here, we examined the mechanism as to how mPILSAP regulates the migration of ECs. Cell adhesion through integrins plays a crucial role in cell migration, and ECs use at least type-1 collagen receptor integrin alpha2beta1, fibronectin receptor alpha5beta1, and vitronectin receptors alphavbeta3 and alphavbeta5. mPILSAP antisense oligodeoxynucleotide (AS-ODN) or leucinethiol (LT), a leucyl-aminopeptidase inhibitor, did not affect the attachment but did significantly inhibit the spreading of cells of the murine endothelial cell line MSS31 when they were plated on vitronectin-, fibronectin-, or type-1 collagen, although they did not affect the expression of integrin alpha2, alpha5, alphav, beta1, beta3, and beta5 subunits on the cell surface. AS-ODN and LT also inhibited the tyrosine phosphorylation of FAK when cells were plated on vitronectin, fibronectin, or type-1 collagen. This inhibition of cell spreading and of tyrosine phosphorylation of FAK could be negated by Mg(2+). These results suggest that mPILSAP is involved in the activation of endothelial integrins.  相似文献   

20.
Functional cooperation between integrins and growth factor receptors has been reported for several systems, one of which is the modulation of insulin signaling by alphavbeta3 integrin. Plasminogen activator inhibitor type-1 (PAI-1), competes with alphavbeta3 integrin for vitronectin (VN) binding. Here we report that PAI-1, in a VN-dependent manner, prevents the cooperation of alphavbeta3 integrin with insulin signaling in NIH3T3 fibroblasts, resulting in a decrease in insulin-induced protein kinase B (PKB) phosphorylation, vascular endothelial growth factor (VEGF) expression and cell migration. Insulin-induced HUVEC migration and angiotube formation was also enhanced in the presence of VN and this enhancement is inhibited by PAI-1. By using specific PAI-1 mutants with either VN binding or plasminogen activator (PA) inhibiting activities ablated, we have shown that the PAI-1-mediated interference with insulin signaling occurs through its direct interaction with VN, and not through its PA neutralizing activity. Moreover, using cells deficient for uPA receptor (uPAR) we have demonstrated that the inhibition of PAI-1 on insulin signaling is independent of uPAR-VN binding. These results constitute the first demonstration of the interaction of PAI-1 with the insulin response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号