首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

2.
The hormone-dependent human breast cancer cell line MCF-7 secretes transforming growth factor-beta (TGF-beta), which can be detected in the culture medium in a biologically active form. These polypeptides compete with human platelet-derived TGF-beta for binding to its receptor, are biologically active in TGF-beta-specific growth assays, and are recognized and inactivated by TGF-beta-specific antibodies. Secretion of active TGF-beta is induced 8 to 27-fold under treatment of MCF-7 cells with growth inhibitory concentrations of antiestrogens. Antiestrogen-induced TGF-beta from MCF-7 cells inhibits the growth of an estrogen receptor-negative human breast cancer cell line in coculture experiments; growth inhibition is reversed with anti-TGF-beta antibodies. We conclude that in MCF-7 cells, TGF-beta is a hormonally regulated growth inhibitor with possible autocrine and paracrine functions in breast cancer cells.  相似文献   

3.
4.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

5.
6.
Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNA in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.  相似文献   

7.
8.
We recently showed that estrogen induces expression of the anti-apoptotic protein, Bcl-2 in MCF-7 human breast cancer cells. Since estrogen-dependent breast tumours can regress following estrogen withdrawal, we hypothesized that stable Bcl-2 expression would prevent estrogen-withdrawal induced regression of MCF-7 tumours. We therefore established tumours in ovariectomized female nude mice implanted with an estrogen-release pellet using untransfected MCF-7 cells or MCF-7 cells stably transfected with a Bcl-2 cDNA sense or antisense expression vector. All tumours grew at similar rates indicating that Bcl-2 levels have no effect on tumour formation. After removal of the estrogen pellet, Bcl-2 antisense tumours and untransfected MCF-7 tumours regressed means of 49% and 52%, respectively, after estrogen pellet removal whereas Bcl-2 sense tumours were significantly stabilized. Regressing tumours displayed characteristics of apoptotic cells. These results show that Bcl-2 can prevent hormone-dependent breast tumour regression and are consistent with the notion that decreased Bcl-2 levels following estrogen withdrawal renders hormone-dependent breast tumour cells sensitive to apoptotic regression.  相似文献   

9.
About two thirds of breast cancers in women are hormone-dependent and require estrogen for growth, its effects being mainly mediated through estrogen receptor α (ERα). Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposite effects on carcinogenesis, with DHA suppressing and AA promoting tumor growth both in vitro and in vivo. However, the mechanism is not clear. Here, we examined whether the effect is mediated through changes in ERα distribution. MCF-7 cells, an ERα-positive human breast cancer cell line, was cultured in estrogen-free medium containing 0, 10 or 60 μM DHA or AA, then were stimulated with estradiol. DHA supplementation resulted in down-regulation of ERα expression (particularly in the extranuclear fraction), a reduction in phosphorylated MAPK, a decrease in cyclin D1 levels and an inhibition in cell viability. In contrast, AA had no such effects. The DHA-induced decrease in ERα expression resulted from proteasome-dependent degradation and not from decreased ERα mRNA expression. We propose that breast cancer cell proliferation is inhibited by DHA through proteasome-dependent degradation of ERα, reduced cyclin D1 expression and inhibition of MAPK signaling.  相似文献   

10.
11.
12.
The antiestrogen tamoxifen has been widely used for decades as selective estrogen receptor (ER) modulator for ERalpha-positive breast tumors. Tamoxifen significantly reduces tumor recurrence by binding to the activation function-2 (AF-2) domain of the ER. Acquired resistance to tamoxifen in breast cancer patients is a serious therapeutic problem. Antiestrogen-resistant breast cancer often shows increased expression of the epidermal growth factor receptor (EGFR) family members, EGFR and ErbB2. In this report we now show that overexpression of EGFR or activated AKT-2 in MCF-7 cells leads to phosphorylation of Ser167 in the AF-1 domain of ERalpha, enhanced ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of tamoxifen, and resistance to tamoxifen. In contrast, transfection of activated MAPK kinase, an immediate upstream activator of MAPK (ERK 1 and 2) into MCF-7 cells leads to phosphorylation of Ser118 in the AF-1 domain of ERalpha, inhibition of ER-amplified in breast cancer 1 (ER:AIB1) interaction in the presence of Tam, and maintenance of sensitivity to tamoxifen. Inhibition of AKT by short inhibitory RNA blocked Ser167 phosphorylation in ER and restored tamoxifen sensitivity. However, maximum sensitivity to tamoxifen was observed when both AKT and MAPK were inhibited. Taken together, these data demonstrate that different phosphorylation sites in the AF-1 domain of ERalpha regulate the agonistic and antagonistic actions of tamoxifen in human breast cancer cells.  相似文献   

13.
Direct in vitro effects of IL-1 on hormone-dependent (MCF-7 and ZR-75-B) and independent (HS-578-T and MDA-231) human breast cancer cell proliferation were investigated in short-term and long-term cell cultures. For short-term (48 h) studies [3H]thymidine uptake was used as an index of proliferation, while for long-term (12 day) cultures actual cell numbers were determined. Initial studies, conducted with MCF-7 cells, demonstrated that both forms of recombinant human IL-1 (alpha and beta) at 10(-11) M inhibited [3H]thymidine uptake by MCF-7 by 70%, and by day 7 of the long-term study alpha and beta IL-1 at 10(-11) M inhibited MCF-7 cell growth by 80%. IL-1, while inhibiting the growth of another hormone-dependent breast cancer cell line; ZR-75-B, had no effect on the hormone-independent cell lines MDA-231 and HS-578-T. The differing proliferative responses of the hormone-dependent and independent cells to IL-1 may, in part, be due to the expression of IL-1 receptors on these cells, in that MCF-7 cells express IL-1 receptors [dissociation constant (Kd) = 2.0 x 10(-10) M; receptor density = 2,500 sites per cell and mol wt = 80,000] while the hormone-independent MDA-231 cells do not.  相似文献   

14.
Expression of estrogen receptor β (ERβ) has been described to reduce growth of cancer cell lines derived from hormone-dependent tumors, like breast cancer. In this study we tested to what extent two ERβ agonists, androgen derivative 3β-Adiol and flavonoid Liquiritigenin, would affect growth and gene expression of different ERβ-positive human breast cancer cell lines. Under standard cell culture conditions, we observed 3β-Adiol to inhibit growth of MCF-7 cells in a dose-dependent manner, whereas growth of BT-474 and MCF-10A cells was suppressed by the maximum concentration (100 nM) only. When treated in serum-free medium, all cell lines except of MDA-MB-231 were responsive to 1 nM 3β-Adiol, and ZR75-1 cells exhibited a dose-dependent antiproliferative response. Providing putative mechanisms underlying the observed growth-inhibitory effect, expression of Ki-67 or cyclins A2 and B1 was downregulated after 3β-Adiol treatment in all responsive lines. In contrast, treatment with lower doses of Liquiritigenin did not affect growth. In MCF-7 cells, the highest dose of this flavonoid exerted proliferative effects accompanied by increased expression of cyclin B1, PR and PS2, indicating unspecific activation of ERα. In conclusion, the ERβ agonists tested exerted distinct concentration-dependent and cell line-specific effects on growth and gene expression. The observed inhibitory effects of 3β-Adiol on breast cancer cell growth encourage further studies on the potential of this and other ERβ agonists as targeted drugs for breast cancer therapy.  相似文献   

15.
Clinical observations have revealed a strong association between estrogen receptor alpha (ERα)-positive tumors and the development of bone metastases, however, the mechanism underlying this association remains unknown. We cultured MCF-7 (ERα-positive) on different rigidity substrates. Compared with cells grown on more rigid substrates (100 kPa), cells grown on soft substrates (10 kPa) exhibited reduced spreading ability, a lower ratio of cells in the S and G2/M cell cycle phases, and a decreased proliferation rate. Using stable isotope labeling by amino acids (SILAC), we further compared the whole proteome of MCF-7 cells grown on substrates of different rigidity (10 and 100 kPa), and found that the expression of eight members of chaperonin CCT increased by at least 2-fold in the harder substrate. CCT folding activity was increased in the hard substrate compared with the soft substrates. Amplified in breast cancer 1 (AIB1), was identified in CCT immunoprecipitates. CCT folding ability of AIB1 increased on 100-kPa substrate compared with 10- and 30-kPa substrates. Moreover, using mammalian two-hybrid protein-protein interaction assays, we found that the polyglutamine repeat sequence of the AIB1 protein was essential for interaction between CCTζ and AIB1. CCTζ-mediated AIB1 folding affects the cell area spreading, growth rate, and cell cycle. The expressions of the c-myc, cyclin D1, and PgR genes were higher on hard substrates than on soft substrate in both MCF-7 and T47D cells. ERα and AIB1 could up-regulate the mRNA and protein expression levels of the c-myc, cyclin D1, and PgR genes, and that 17 β-estradiol could enhance this effects. Conversely, 4-hydroxytamoxifen, could inhibit these effects. Taken together, our studies demonstrate that some ERα-positive breast cancer cells preferentially grow on more rigid substrates. CCT-mediated AIB1 folding appears to be involved in the rigidity response of breast cancer cells, which provides novel insight into the mechanisms of bone metastasis.  相似文献   

16.
Estrogens produced within breast tumors may play a pivotal role in growth stimulation of the breast cancer cells. However, it is elusive whether the epithelial breast cancer cells themselves synthesize estrogens, or whether the surrounding tumor stromal cells synthesize and supply the cancer cells with estrogen. The aromatase enzyme catalyzes the estrogen production, aromatizing circulating androgens into estrogens. The aim of this study was to investigate aromatase expression and function in a model system of human breast cancer, using the estrogen responsive human MCF-7 breast cancer cell line. Cells were cultured in a low estrogen milieu and treated with estrogens, aromatizable androgens or non-aromatizable androgens. Cell proliferation, expression of estrogen-regulated proteins and aromatase activity were investigated. The MCF-7 cell line was observed to express sufficient aromatase enzyme activity in order to aromatize the androgen testosterone, resulting in a significant cell growth stimulation. The testosterone-mediated growth effect was completely inhibited by the aromatase inhibitors letrozole and 4-hydroxy-androstenedione. Expression studies of estrogen-regulated proteins confirmed that testosterone was aromatized to estrogen in the MCF-7 cells. Thus, the results indicate that epithelial breast cancer cells possess the ability to aromatize circulating androgens to estrogens.  相似文献   

17.
18.
Athymic (nu/nu) mice are T cell deficient and can accept xenografts of human tumor material. Hormone-dependent tumor growth can be demonstrated in ovariectomized athymic mice by estrogen administration. Estrogen receptor (ER) positive MCF-7 breast cancer cells implanted into the axillary mammary fat do not grow into palpable tumors unless sustained release preparations of estrogen are administered. The non-steroidal antiestrogen tamoxifen, though it exhibits estrogenic properties in the mouse, does not facilitate MCF-7 tumor growth (during short term, i.e. 8 weeks of therapy) and can prevent estradiol-stimulated growth. In contrast, ER negative MDA-MB-231 cells grow with or without estrogen administration and tamoxifen does not control tumor growth. These statements reflect current dogma concerning the value of athymic mice to confirm the hormone dependent growth of cancer cells in vivo. Our aim has been to define the limits of this dogma and to investigate the growth relationship of hormone-dependent and independent cells with their host environment. The potential endocrine or paracine effect of ER negative tumors on the growth of ER positive tumors was evaluated by transplantation on opposite sides of athymic mice or by the inoculation of different ratios of ER positive/negative cells (MCF-7:MDA-MB-231 9:1, 99:1, 999:1). MCF-7 cells could not be encouraged to grow by a rapidly growing MDA-MB-231 tumor on the opposite side of the animal. Similarly ER negative tumors grew out of the mixed tumor inoculates suggesting that ER positive tumors could not be encouraged to grow preferentially by the paracrine influences of ER negative cells. However, estrogen facilitates the growth of an ER positive tumor following inoculation of mixed cell populations. Antiestrogen treatment can blunt estrogen-stimulated growth but cannot control the growth of ER positive/negative containing tumors. ER positive endometrial tumors grow in response to estrogen treatment and some (EnCa101) have been shown to grow in response to tamoxifen or a combination of tamoxifen and estrogen. More unusual though is our recent observation that an ER negative primary endometrial tumor (BR) and its metastasis (BR-MET) grow more rapidly in estrogen-treated athymic mice. This finding seems to have far-ranging consequences for our view of hormone-dependent growth. Either our view of estrogen-stimulated growth needs to be modified or the host is specifically altered during estrogen treatment. We have taken the position that since natural killer cells (present in athymic mice) can be lowered by estrogen this may result in an increased tumor cell survival in the heterotransplant model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
CAPER is an estrogen receptor (ER) co-activator that was recently shown to be involved in human breast cancer pathogenesis. Indeed, we reported increased expression of CAPER in human breast cancer specimens. We demonstrated that CAPER was undetectable or expressed at relatively low levels in normal breast tissue and assumed a cytoplasmic distribution. In contrast, CAPER was expressed at higher levels in ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) specimens, where it assumed a predominantly nuclear distribution. However, the functional role of CAPER in human breast cancer initiation and progression remained unknown. Here, we used a lentiviral-mediated gene silencing approach to reduce the expression of CAPER in the ER-positive human breast cancer cell line MCF-7. The proliferation and tumorigenicity of MCF-7 cells stably expressing control or human CAPER shRNAs was then determined via both in vitro and in vivo experiments. Knockdown of CAPER expression significantly reduced the proliferation of MCF-7 cells in vitro. Importantly, nude mice injected with MCF-7 cells harboring CAPER shRNAs developed smaller tumors than mice injected with MCF-7 cells harboring control shRNAs. Mechanistically, tumors derived from mice injected with MCF-7 cells harboring CAPER shRNAs displayed reduced expression of the cell cycle regulators PCNA, MCM7, and cyclin D1, and the protein synthesis marker 4EBP1. In conclusion, knockdown of CAPER expression markedly reduced human breast cancer cell proliferation in both in vitro and in vivo settings. Mechanistically, knockdown of CAPER abrogated the activity of proliferative and protein synthesis pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号