首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of intracellular pH (pH(i)) in colonocytes of the rat proximal colon has been investigated using the pH-sensitive dye BCECF and compared with the regulation of pH(i) in the colonocytes of the distal colon. The proximal colonocytes in a HEPES-buffered solution had pH(i)=7.24+/-0.04 and removal of extracellular Na(+) lowered pH(i) by 0.24 pH units. Acid-loaded colonocytes by an NH(3)/NH(4)(+) prepulse exhibited a spontaneous recovery that was partially Na(+)-dependent and could be inhibited by ethylisopropylamiloride (EIPA). The Na(+)-dependent recovery rate was enhanced by increasing the extracellular Na(+) concentration and was further stimulated by aldosterone. In an Na(+)- and K(+)-free HEPES-buffered solution, the recovery rate from the acid load was significantly stimulated by addition of K(+) and this K(+)-dependent recovery was partially blocked by ouabain. The intrinsic buffer capacity of proximal colonocytes at physiological pH(i) exhibited a nearly 2-fold higher value than in distal colonocytes. Butyrate induced immediate colonocyte acidification that was smaller in proximal than in distal colonocytes. This acidification was followed by a recovery phase that was both EIPA-sensitive and -insensitive and was similar in both groups of colonocytes. In a HCO(3)(-)/CO(2)-containing solution, pH(i) of the proximal colonocytes was 7.20+/-0.04. Removal of external Cl(-) caused alkalinization that was inhibited by DIDS. The recovery from an alkaline load induced by removal of HCO(3)(-)/CO(2) from the medium was Cl(-)-dependent, Na(+)-independent and blocked by DIDS. Recovery from an acid load in EIPA-containing Na(+)-free HCO(3)(-)/CO(2)-containing solution was accelerated by addition of Na(+). Removal of Cl(-) inhibited the effect of Na(+). In summary, the freshly isolated proximal colonocytes of rats express Na(+)/H(+) exchanger, H(+)/K(+) exchanger ((H(+)-K(+))-ATPase) and Na(+)-dependent Cl(-)/HCO(3)(-) exchanger that contribute to acid extrusion and Na(+)-independent Cl(-)/HCO(3)(-) exchanger contributing to alkali extrusion. All of these are likely involved in the regulation of pH(i) in vivo. Proximal colonocytes are able to maintain a more stable pH(i) than distal cells, which seems to be facilitated by their higher intrinsic buffer capacity.  相似文献   

2.
Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (~10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.  相似文献   

3.
The molecular mechanisms responsible for intracellular pH regulation in the U2-OS osteosarcoma cell line were investigated by loading with 2',7'-bis(2-carboxyethyl)-5(6) carboxyfluorescein ester and manipulation of Cl(-) and Na(+) gradients, both in HEPES- and HCO(3)(-)/CO(2)-buffered media. Both acidification and alkalinisation were poorly sensitive to 4,4'-diisothiocyanate dihydrostilbene-2,2'-disulfonic acid, inhibitor of the anion exchanger, but sensitive to amiloride, inhibitor of the Na(+)/H(+) exchanger. In addition to the amiloride-sensitive Na(+)/H(+) exchanger, another H(+) extruding mechanism was detected in U-2 OS cells, the Na(+)-dependent HCO(3)(-)/Cl(-) exchanger. No significant difference in resting pH(i) and in the rate of acidification or alkalinisation was observed in clones obtained from U-2 OS cells by transfection with the MDR1 gene and overexpressing P-glycoprotein. However, both V(max) and K' values for intracellular [H(+)] of the Na(+)/H(+) exchanger were significantly reduced in MDR1-transfected clones, in the absence and/or presence of drug selection, in comparison to vector-transfected or parental cell line. NHE1, NHE5 and at a lower extent NHE2 mRNA were detected in similar amount in all U2-OS clones. It is concluded that, although overexpression of P-glycoprotein did not impair pH(i) regulation in U-2 OS cells, the kinetic parameters of the Na(+)/H(+) exchanger were altered, suggesting a functional relationship between the two membrane proteins.  相似文献   

4.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   

5.
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H(+)-ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, to maintain pH(cyt) homeostasis. Immunocytochemical studies revealed V-H(+)-ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na(+) and HCO(3)(-) that were similar to those observed in the presence of either Na(+), or Na(+) and HCO(3)(-). The Na(+)- and HCO(3)(-)-independent pH(cyt) recovery was inhibited by bafilomycin A(1), a V-H(+)-ATPase inhibitor. These studies show a Na(+)- and HCO(3)(-)-independent pH(cyt) regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases.  相似文献   

6.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

7.
It is well known that chemotactic agents active Na(+)/H(+) exchanger, increasing intracellular pH of neutrophils, but their effect on bicarbonate transporters have not been established yet. To study the effect of fMLP on the activity of Cl(-)/HCO(3)(-) exchange, the rate of pH recovery after acute Cl(-) readmission in cell subjected to an alkaline load by CO(2) washout in a Cl-free medium was measured. The activity of the exchanger was reduced to 72% of control when cells were pre-incubated for 5 min with 0.1 μM fMLP and reached 48% of control in steady state after acute exposure. After extracellular bicarbonate or TMA addition the rate recovery of intracellular pH was reduce at 72% and at 84%, respectively. The inhibitory effect on the intracellular pH recovery was not affected by blockers of Na(+)/H(+) exchange. We conclude from these studies that an increase of pH(i) produced for this chemotactic agent is facilitated by the simultaneous activation of Na(+)/H(+) exchange and inhibition of Cl(-)/HCO(3)(-) exchange in neutrophils.  相似文献   

8.
Mixture interactions between sour and salt taste modalities were investigated in rats by direct measurement of intracellular pH (pH(i)) and Na(+) activity ([Na(+)](i)) in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) nerve recordings. Stimulating the lingual surface with NaCl solutions adjusted to pHs ranging between 2.0 and 10.3 increased the magnitude of NaCl CT responses linearly with increasing external pH (pH(o)). At pH 7.0, the epithelial sodium channel (ENaC) blocker, benzamil, decreased NaCl CT responses and inhibited further changes in CT responses induced by varying pH(o) to 2.0 or 10.3. At constant pH(o), buffering NaCl solutions with potassium acetate/acetic acid (KA/AA) or HCO(3)(-)/CO(2) inhibited NaCl CT responses relative to CT responses obtained with NaCl solutions buffered with HEPES. The carbonic anhydrase blockers, MK-507 and MK-417, attenuated the inhibition of NaCl CT responses in HCO(3)(-)/CO(2) buffer, suggesting a regulatory role for pH(i). In polarized TRCs step changes in apical pH(o) from 10.3 to 2.0 induced a linear decrease in pH(i) that remained within the physiological range (slope = 0.035; r(2) = 0.98). At constant pH(o), perfusing the apical membrane with Ringer's solutions buffered with KA/AA or HCO(3)(-)/CO(2) decreased resting TRC pH(i), and MK-507 or MK-417 attenuated the decrease in pH(i) in TRCs perfused with HCO(3)(-)/CO(2) buffer. In parallel experiments, TRC [Na(+)](i) decreased with (a) a decrease in apical pH, (b) exposing the apical membrane to amiloride or benzamil, (c) removal of apical Na(+), and (d) acid loading the cells with NH(4)Cl or sodium acetate at constant pH(o). Diethylpyrocarbonate and Zn(2+), modification reagents for histidine residues in proteins, attenuated the CO(2)-induced inhibition of NaCl CT responses and the pH(i)-induced inhibition of apical Na(+) influx in TRCs. We conclude that TRC pH(i) regulates Na(+)-influx through amiloride-sensitive apical ENaCs and hence modulates NaCl CT responses in acid/salt mixtures.  相似文献   

9.
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.  相似文献   

10.
11.
Mechanism of acid adaptation of a fish living in a pH 3.5 lake   总被引:1,自引:0,他引:1  
Despite unfavorable conditions, a single species of fish, Osorezan dace, lives in an extremely acidic lake (pH 3.5) in Osorezan, Aomori, Japan. Physiological studies have established that this fish is able to prevent acidification of its plasma and loss of Na(+). Here we show that these abilities are mainly attributable to the chloride cells of the gill, which are arranged in a follicular structure and contain high concentrations of Na(+)-K(+)-ATPase, carbonic anhydrase II, type 3 Na(+)/H(+) exchanger (NHE3), type 1 Na(+)-HCO(3)(-) cotransporter, and aquaporin-3, all of which are upregulated on acidification. Immunohistochemistry established their chloride cell localization, with NHE3 at the apical surface and the others localized to the basolateral membrane. These results suggest a mechanism by which Osorezan dace adapts to its acidic environment. Most likely, NHE3 on the apical side excretes H(+) in exchange for Na(+), whereas the electrogenic type 1 Na(+)-HCO(3)(-) cotransporter in the basolateral membrane provides HCO(3)(-) for neutralization of plasma using the driving force generated by Na(+)-K(+)-ATPase and carbonic anhydrase II. Increased expression of glutamate dehydrogenase was also observed in various tissues of acid-adapted dace, suggesting a significant role of ammonia and bicarbonate generated by glutamine catabolism.  相似文献   

12.
The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.  相似文献   

13.
To investigate the interaction between the ion channels and transporters in the salivary fluid secretion, we measured the membrane voltage (V(m)) and intracellular concentrations of Ca(2+), Na(+) ([Na(+)](c)), Cl(-), and H(+) (pH(i)) in rat submandibular gland acini (RSMGA). After a transient depolarization induced by a short application of acetylcholine (ACh; 5 muM, 20 s), RSMGA showed strong delayed hyperpolarization (V(h,ACh); -95 +/- 1.8 mV) that was abolished by ouabain. In the HCO(3)(-)-free condition, the V(h,ACh) was also blocked by bumetanide, a blocker of Na(+)-K(+)-2Cl(-) cotransporter (NKCC). In the presence of HCO(3)(-) (24 meq, bubbled with 5% CO(2)), however, the V(h,ACh) was not blocked by bumetanide, but it was suppressed by ethylisopropylamiloride (EIPA), a Na(+)/H(+) exchanger (NHE) inhibitor. Similarly, the ACh-induced increase in [Na(+)](c) was totally blocked by bumetanide in the absence of HCO(3)(-), but only by one-half in the presence of HCO(3)(-). ACh induced a prominent acidification of pH(i) in the presence of HCO(3)(-), and the acidification was further increased by EIPA treatment. Without HCO(3)(-), an application of ACh strongly accelerated the NKCC activity that was measured from the decay of pH(i) during the application of NH(4)(+) (20 mM). Notably, the ACh-induced activation of NKCC was largely suppressed in the presence of HCO(3)(-). In summary, the ACh-induced anion secretion in RSMGA is followed by the activation of NKCC and NHE, resulting an increase in [Na(+)](c). The intracellular Na(+)-induced activation of electrogenic Na(+)/K(+)-ATPase causes V(h,ACh). The regulation of NKCC and NHE by ACh is strongly affected by the physiological level of HCO(3)(-).  相似文献   

14.
This study was conducted to determine the contribution of ion transport to restitution after injury in the gastric mucosa. For this, intact sheets of stomach from the bullfrog, Rana catesbeiana, were mounted in Ussing chambers. Restitution was evaluated in the presence or absence of ion transport inhibitors amiloride, DIDS, and bumetanide to block Na(+)/H(+) exchange, Cl(-)/HCO(3)(-) exchange and Na(+)/HCO(3)(-) co-transport, and Na(+)-K(+)-2Cl(-) cotransport, respectively. Ion substitution experiments with Na(+)-free, Cl(-)-free, and HCO(3)(-)-free solutions were also performed. Injury to the mucosa was produced with 1 M NaCl, and restitution was evaluated by recovery of transepithelial resistance (TER), mannitol flux, and morphology. Amiloride, bumetanide, Cl(-)-free, or HCO(3)(-)-free solutions did not affect restitution. In Na(+)-free solutions, recovery of TER and mannitol flux did not occur because surface cells did not attach to the underlying basement membrane. In contrast, all aspects of restitution were inhibited by DIDS, a compound that inhibits Na(+)-dependent HCO(3)(-) transport. Because HCO(3)(-)-free solutions did not inhibit restitution, it was concluded that DIDS must block a yet undefined pathway not involved in HCO(3)(-) ion transport but essential for cell migration after injury and restitution in the gastric mucosa.  相似文献   

15.
The cyanobacterium Synechocystis sp. strain PCC 6803 possesses two CO(2) uptake systems and two HCO(3)(-) transporters. We transformed a mutant impaired in CO(2) uptake and in cmpA-D encoding a HCO(3)(-)transporter with a transposon inactivation library, and we recovered mutants unable to take up HCO(3)(-) and grow in low CO(2) at pH 9.0. They are all tagged within slr1512 (designated sbtA). We show that SbtA-mediated transport is induced by low CO(2), requires Na(+), and plays the major role in HCO(3)(-) uptake in Synechocystis. Inactivation of slr1509 (homologous to ntpJ encoding a Na(+)/K(+)-translocating protein) abolished the ability of cells to grow at [Na(+)] higher than 100 mm and severely depressed the activity of the SbtA-mediated HCO(3)(-) transport. We propose that the SbtA-mediated HCO(3)(-) transport is driven by DeltamuNa(+) across the plasma membrane, which is disrupted by inactivating ntpJ. Phylogenetic analyses indicated that two types of sbtA exist in various cyanobacterial strains, all of which possess ntpJ. The sbtA gene is the first one identified as essential to Na(+)-dependent HCO(3)(-) transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO(2) supply is limited, or in Prochlorococcus strains that do not possess CO(2) uptake systems or Cmp-dependent HCO(3)(-) transport.  相似文献   

16.
The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe). The experiments were performed in HCO(-)(3)/CO(2) or HEPES/NaOH buffers. PCR and functional approaches showed that NHE1 mutant islets do not express compensatory pH-regulating mechanisms. NHE1 played a greater role than HCO(-)(3)-dependent mechanisms in the correction of an acidification imposed by a pulse of NH(4)Cl. In contrast, basal pH(c) (in low glucose) and the alkalinization produced by high glucose were independent of NHE1. Dimethylamiloride, a classic blocker of Na(+)/H(+) exchange, did not affect pH(c) but increased insulin secretion in NHE1 mutant islets, indicating unspecific effects. In control islets, glucose similarly increased [Ca(2+)](c) and insulin secretion in HCO(-)(3) and HEPES buffer, although pH(c) changed in opposite directions. The amplification of insulin secretion that glucose produces when [Ca(2+)](c) is clamped at an elevated level by KCl was also unrelated to pH(c) and pH(c) changes. All effects of glucose on [Ca(2+)](c) and insulin secretion proved independent of NHE1. In conclusion, NHE1 protects beta-cells against strong acidification, but has no role in stimulus-secretion coupling. The changes in pH(c) produced by glucose involve HCO(-)(3)-dependent mechanisms. Variations in beta-cell pH(c) are not causally related to changes in insulin secretion.  相似文献   

17.
We hypothesized that the function of duodenocyte apical membrane acid-base transporters are essential for H(+) absorption from the lumen. We thus examined the effect of inhibition of Na(+)/H(+) exchanger-3 (NHE3), cystic fibrosis transmembrane regulator (CFTR), or apical anion exchangers on transmucosal CO(2) diffusion and HCO(3)(-) secretion in rat duodenum. Duodena were perfused with a pH 6.4 high CO(2) solution or pH 2.2 low CO(2) solution with the NHE3 inhibitor, S3226, the anion transport inhibitor, DIDS, or pretreatment with the potent CFTR inhibitor, CFTR(inh)-172, with simultaneous measurements of luminal and portal venous (PV) pH and carbon dioxide concentration ([CO(2)]). Luminal high CO(2) solution increased CO(2) absorption and HCO(3)(-) secretion, accompanied by PV acidification and PV Pco(2) increase. During CO(2) challenge, CFTR(inh)-172 induced HCO(3)(-) absorption, while inhibiting PV acidification. S3226 reversed CFTR(inh)-associated HCO(3)(-) absorption. Luminal pH 2.2 challenge increased H(+) and CO(2) absorption and acidified the PV, inhibited by CFTR(inh)-172 and DIDS, but not by S3226. CFTR inhibition and DIDS reversed HCO(3)(-) secretion to absorption and inhibited PV acidification during CO(2) challenge, suggesting that HCO(3)(-) secretion helps facilitate CO(2)/H(+) absorption. Furthermore, CFTR inhibition prevented CO(2)-induced cellular acidification reversed by S3226. Reversal of increased HCO(3)(-) loss by NHE3 inhibition and reduced intracellular acidification during CFTR inhibition is consistent with activation or unmasking of NHE3 activity by CFTR inhibition, increasing cell surface H(+) available to neutralize luminal HCO(3)(-) with consequent CO(2) absorption. NHE3, by secreting H(+) into the luminal microclimate, facilitates net transmucosal HCO(3)(-) absorption with a mechanism similar to proximal tubular HCO(3)(-) absorption.  相似文献   

18.
The buffering capacity (beta) of rainbow trout (Oncorhynchus mykiss) plasma was manipulated prior to intravascular injection of bovine carbonic anhydrase to test the idea that proton (H+) availability limits the catalysed dehydration of HCO3- within the extracellular compartment. An extracorporeal blood shunt was employed to continuously monitor blood gases in vivo in fish exhibiting normal plasma beta (-3.9+/-0.3 mmol 1(-1) pH unit(-1)), and in fish with experimentally (using N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]) elevated plasma beta (-12.1+/-1.1 mmol 1(-1) pH unit(-1)). An injection of 5 mg kg(-1) carbonic anhydrase equally reduced (after 90 min) the arterial partial pressure of CO2 in trout with regular (-0.23+/-0.05 Torr) or high (-0.20+/-0.05 Torr) plasma beta; saline injection was without effect. Because ventilation and venous blood gases were unaffected by carbonic anhydrase, the effect of extracellular carbonic anhydrase in lowering arterial partial pressure of CO2 was likely caused solely by a specific enhancement of CO2 excretion owing to acceleration of HCO3- dehydration within the plasma. The lowering of arterial partial pressure of CO2 in trout after injection of exogenous carbonic anhydrase provides the first in vivo evidence that the accessibility of plasma HCO3- to red blood cell carbonic anhydrase constrains CO2 excretion under resting conditions. Because the velocity of red blood cell Cl-/HCO3- exchange governs HCO3- accessibility to red blood cell carbonic anhydrase, the present study also provides evidence that CO2 excretion at rest is limited by the relatively slow rate of Cl-/HCO3- exchange. The effect of carbonic anhydrase in lowering arterial partial pressure of CO2 was unrelated to plasma buffering capacity. While these data could suggest that H+ availability does not limit extracellular HCO3- dehydration in vivo at resting rates of CO2 excretion, it is more likely that the degree to which plasma beta was elevated in the present study was insufficient to drive a substantially increased component of HCO3- dehydration through the plasma.  相似文献   

19.
This study examines the contribution of anion transporters to the swelling and intracellular acidification of glial cells from an extracellular lactacidosis, a condition well-known to accompany cerebral ischemia and traumatic brain injury. Suspended C6 glioma cells were exposed to lactacidosis in physiological or anion-depleted media, and different anion transport inhibitors were applied. Changes in cell volume and intracellular pH (pH(i)) were simultaneously quantified by flow cytometry. Extracellular lactacidosis (pH 6.2) led to an increase in cell volume to 125.1 +/- 2.5% of baseline within 60 min, whereas the pH(i) dropped from the physiological value of 7.13 +/- 0.05 to 6.32 +/- 0.03. Suspension in Cl(-)-free or HCO(3)(-)/CO(2)-free media or application of anion transport inhibitors [0.1 mM bumetanide or 0.5 mM 4, 4'-diisothio-cyanatostilbene-2,2'-disulfonic acid (DIDS)] did not affect cell volume during baseline conditions but significantly reduced cell swelling from lactacidosis. In addition, the Cl(-)-free or HCO(3)(-)/CO(2)-free media and DIDS attenuated intracellular acidosis on extracellular acidification. From these findings it is concluded that besides the known activation of the Na(+)/H(+) exchanger, activation of the Na(+)-independent Cl(-)/HCO(3)(-) exchanger and the Na(+)-K(+)-Cl(-) cotransporter contributes to acidosis-induced glial swelling and the intracellular acidification. Inhibition of these processes may be of interest for future strategies in the treatment of cytotoxic brain edema from cerebral ischemia or traumatic brain injury.  相似文献   

20.
A high sodium intake increases the capacity of the medullary thick ascending limb (MTAL) to absorb HCO(3)(-). Here, we examined the role of the apical NHE3 and basolateral NHE1 Na(+)/H(+) exchangers in this adaptation. MTALs from rats drinking H(2)O or 0.28 M NaCl for 5-7 days were perfused in vitro. High sodium intake increased HCO(3)(-) absorption rate by 60%. The increased HCO(3)(-) absorptive capacity was mediated by an increase in apical NHE3 activity. Inhibiting basolateral NHE1 with bath amiloride eliminated 60% of the adaptive increase in HCO(3)(-) absorption. Thus the majority of the increase in NHE3 activity was dependent on NHE1. A high sodium intake increased basolateral Na(+)/H(+) exchange activity by 89% in association with an increase in NHE1 expression. High sodium intake increased apical Na(+)/H(+) exchange activity by 30% under conditions in which basolateral Na(+)/H(+) exchange was inhibited but did not change NHE3 abundance. These results suggest that high sodium intake increases HCO(3)(-) absorptive capacity in the MTAL through 1) an adaptive increase in basolateral NHE1 activity that results secondarily in an increase in apical NHE3 activity; and 2) an adaptive increase in NHE3 activity, independent of NHE1 activity. These studies support a role for NHE1 in the long-term regulation of renal tubule function and suggest that the regulatory interaction whereby NHE1 enhances the activity of NHE3 in the MTAL plays a role in the chronic regulation of HCO(3)(-) absorption. The adaptive increases in Na(+)/H(+) exchange activity and HCO(3)(-) absorption in the MTAL may play a role in enabling the kidneys to regulate acid-base balance during changes in sodium and volume balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号