首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Objective analysis of hand and finger kinematics is important to increase understanding of hand function and to quantify motor symptoms for clinical diagnosis. The aim of this paper is to compare a new 3D measurement system containing multiple miniature inertial sensors (PowerGlove) with an opto-electronic marker system during specific finger tasks in three healthy subjects. Various finger movements tasks were performed: flexion, fast flexion, tapping, hand open/closing, ab/adduction and circular pointing. 3D joint angles of the index finger joints and position of the thumb and index were compared between systems. Median root mean square differences of the main joint angles of interest ranged between 3.3 and 8.4deg. Largest differences were found in fast and circular pointing tasks, mainly in range of motion. Smallest differences for all 3D joint angles were observed in the flexion tasks. For fast finger tapping, the thumb/index amplitude showed a median difference of 15.8mm. Differences could be explained by skin movement artifacts caused by relative marker movements of the marker system, particularly during fast tasks; large movement accelerations and angular velocities which exceeded the range of the inertial sensors; and by differences in segment calibrations between systems. The PowerGlove is a system that can be of value to measure 3D hand and finger kinematics and positions in an ambulatory setting. The reported differences need to be taken into account when applying the system in studies understanding the hand function and quantifying hand motor symptoms in clinical practice.  相似文献   

2.
Design features of mobile computing technology such as device size and key location may affect thumb motor performance during single-handed use. Since single-handed use requires the thumb posture to vary with key location, we hypothesize that motor performance is associated with thumb and wrist joint postures. A repeated measures laboratory experiment of 10 right-handed participants measured thumb and wrist joint postures during reciprocal tapping tasks between two keys for different key pairs among 12 emulated keys. Fitts' effective index of performance and joint postures at contact with each key were averaged across trials for each key. Thumb motor performance varied for different keys, with poorest performances being associated with excessive thumb flexion such as when tapping on keys closest to the base of the thumb in the bottom right corner of the phone. Motor performance was greatest when the thumb was in a typical resting posture, neither significantly flexed nor fully extended with slight CMC joint abduction and supination, such as when tapping on keys located in the top right and middle left areas on the phone. Grip was also significantly affected by key location, with the most extreme differences being between the top left and bottom right corners of the phone. These results suggest that keypad designs aimed at promoting performance for single-handed use should avoid placing frequently used functions and keys close to the base of the thumb and instead should consider key locations that require a thumb posture away from its limits in flexion/extension, as these postures promote motor performance.  相似文献   

3.
4.
We studied coordination of central motor commands (CMCs) coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm. Dependences of the characteristics of these commands on the direction of the effort and rate of its generation were analyzed. Amplitudes of rectified and averaged EMGs recorded from a number of shoulder belt and shoulder muscles were considered correlates of the CMC intensity. The development of the effort of a given direction and rate of rise was realized in the horizontal-plane operational space; the arm position corresponded to the 30 deg angle in the shoulder joint (external angle with respect to the frontal plane) and 90 deg angle in the elbow joint. We plotted sector diagrams of the relative changes in the level of dynamic and stationary phases of EMG activity of the studied muscles for the entire set of directions of the efforts generated with different rates of rise. In the course of formation of rapid two-joint isometric efforts, realization of nonsynergic motor tasks (extension of one joint and flexion of another one, and vice versa) required significant activation of muscles of different functional directions for both joints. Time organization of EMG activity of extensors and flexors of the shoulder and elbow joints related to the maximum and relatively rapid generation of the effort (rise time 0.12 to 0.13 and 0.25 sec, respectively) was rather complex and included dynamic and stationary phases. With these time parameters of generation of the efforts (both flexion and extension), the appearance at the stationary effort of 40 N was controlled based on coordinated interaction of dynamic phases of the activation of agonistic and antagonistic muscles. It is concluded that CMCs coming to extensors and flexors of both joints upon generation of rapid isometric efforts are rather similar in their parameters to those under conditions of realization of the forearm movements in the space in an isotonic mode.  相似文献   

5.
We aimed to determine the role of the wrist, elbow and shoulder joints to single-finger tapping. Six human subjects tapped with their index finger at a rate of 3 taps/s on a keyswitch across five conditions, one freestyle (FS) and four instructed tapping strategies. The four instructed conditions were to tap on a keyswitch using the finger joint only (FO), the wrist joint only (WO), the elbow joint only (EO), and the shoulder joint only (SO). A single-axis force plate measured the fingertip force. An infra-red active-marker three-dimensional motion analysis system measured the movement of the fingertip, hand, forearm, upper arm and trunk. Inverse dynamics estimated joint torques for the metacarpal-phalangeal (MCP), wrist, elbow, and shoulder joints. For FS tapping 27%, 56%, and 18% of the vertical fingertip movement were a result of flexion of the MCP joint and wrist joint and extension of the elbow joint, respectively. During the FS movements the net joint powers between the MCP, wrist and elbow were positively correlated (correlation coefficients between 0.46 and 0.76) suggesting synergistic efforts. For the instructed tapping strategies (FO, WO, EO, and SO), correlations decreased to values below 0.35 suggesting relatively independent control of the different joints. For FS tapping, the kinematic and kinetic data indicate that the wrist and elbow contribute significantly, working in synergy with the finger joints to create the fingertip tapping task.  相似文献   

6.
The role of the forearm (extrinsic) finger flexor muscles in initiating rotation of the metacarpophalangeal (MCP) joint and in coordinating flexion at the MCP, the proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints remains a matter of some debate. To address the biomechanical feasibility of the extrinsic flexors performing these actions, a computer simulation of the index finger was created. The model consisted of a planar open-link chain comprised of three revolute joints and four links, driven by the change in length of the flexor muscles. Passive joint characteristics, included in the model, were obtained from system identification experiments involving the application of angular perturbations to the joint of interest. Simulation results reveal that in the absence of passive joint torque, shortening of the extrinsic flexors results in PIP flexion (80°), but DIP (8°) and MCP (7°) joint extension. The inclusion of normal physiological levels of passive joint torque, however, results in simultaneous flexion of all three joints (63° for DIP, 75° for PIP, and 43° for MCP). Applicability of the simulation results was confirmed by recording finger motion produced by electrical stimulation of the extrinsic flexor muscles for the index finger. These findings support the view that the extrinsic flexor muscles can initiate MCP flexion, and produce simultaneous motion at the MCP, PIP, and DIP joints.  相似文献   

7.
We hypothesized that movement fluctuations in the index finger reflect the integrated result of the coordination of multiple muscles because index finger movements are determined by the cooperation of multiple muscles spanning the metacarpophalangeal (MCP) joint. To evaluate this hypothesis, the aim of the present study was to examine the fluctuations of the index finger in abduction-adduction and extension-flexion directions during a position-holding task using two laser displacement sensors. Eleven healthy men maintained their index finger position while supporting a load at 5% of the maximal voluntary contraction force. To maintain the position of the index finger, displacement of the index finger in the abduction-adduction and extension-flexion directions was measured from a distance with two laser displacement sensors that were positioned to the lateral side of and above the index finger. The index finger movements fluctuated around the target position in not only the abduction-adduction direction but also the extension-flexion direction. The path length of finger displacement and the standard deviation of finger acceleration were significantly greater in the extension-flexion direction than in the abduction-adduction direction. These results suggest that the index finger movements quantified by two laser displacement sensors reflect the coordination of multiple muscles spanning the MCP joint.  相似文献   

8.
We studied coordination of central motor commands (СMCs) coming to muscles of the shoulder and shoulder belt in the course of single-joint and two-joint movements including flexion and extension of the elbow and shoulder joints. Characteristics of rectified and averaged EMGs recorded from a few muscles of the upper limb were considered correlates of the CMC parameters. Special attention was paid to coordination of CMCs coming to two-joint muscles that are able to function as common flexors (m. biceps brachii, caput breve, BBcb) and common extensors (m. triceps brachii, caput longum, TBcl) of the elbow and shoulder joints. Upper limb movements used in the tests included planar shifts of the arm from one spatial point to another resulting from either simultaneous changes in the angles of the shoulder and elbow joints or isolated sequential (two-stage) changes in these joint angles. As was found, shoulder muscles providing movements of the elbow with changes in the angle of the elbow joint, i.e., BBcb and TBcl, were also intensely involved in the performance of single-joint movements in the shoulder joint. The CMCs coming to two-joint muscles in the course of two-joint movements appeared, in the first approximation, as sums of the commands received by these muscles in the course of corresponding single-joint movements in the elbow and shoulder joints. Therefore, if we interpret the isolated forearm movement performed due to a change in the angle of the elbow joint as the main motor event, while the shoulder movement is considered the accessory one, we can conclude that realization of a two-joint movement of the upper-limb distal part is based on superposition of CMCs related to basic movements (main and accessory). Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 48–56, January–February, 2009.  相似文献   

9.
10.
The aim of this study was to assess differences of grip pattern and finger coordination in pianists and non-pianists, using hand tasks that were unrelated to pianistic practice. Eleven pianists with more than 10 years of intensive practice were compared to 14 non-pianists. Both groups performed four tasks with their right hand: (1) gross grip at fast velocity; (2) gross grip at slow velocity; (3) hook grip at fast velocity; and (4) hook grip at slow velocity. The three-dimensional coordinates were reconstructed using a kinematic analysis system, and the flexion and extension angles of the metacarpophalangeal joints were calculated. The phase diagrams were qualitatively and quantitatively appraised in order to identify differences between the groups. Principal component analysis was used to assess differences between pianists and non-pianists in terms of the reproducibility and regularity of palmar grip cycles. Coefficients of correlation between the joint angles were used to analyze finger coordination during the tasks. The pianists showed better reproducibility and regularity in the palmar grip pattern, as well as finger movements that were more coordinated when performing different hand tasks.  相似文献   

11.
Diarthrodial joints are freely moveable joints containing synovial fluid (SF) within a connective tissue joint capsule that allows for low-friction and low-wear articulation of the cartilaginous ends of long bones. Biomechanical cues from joint articulation regulate synoviocyte and cartilage biology via joint capsule strain, in turn altering the composition of SF. Joint flexion is clinically associated with pain in knees with arthritis and effusion, with the nociception possibly originating from joint capsule strain. The hypothesis of this study was that knee fluid volume distribution and joint capsule strain are altered with passive flexion in the rabbit model. The aims were to (a) determine the volume distribution of fluid in the joint at different total volumes and with flexion of rabbit knees ex vivo, (b) correlate the volume distribution for the ex vivo model to in vivo data, and (c) determine the strains at different locations in the joint capsule with flexion. During knee flexion, ~20% of anteriorly located joint fluid moved posteriorly, correlating well with the fluid motion observed in in vivo joints. Planar joint capsule principal strains were ~100% (tension) in the proximal-distal direction and ~-40% (shortening) in the circumferential direction, relative to the femur axis and 30° strain state. The joint capsule strains with flexion are consistent with the mechanics of the tendons and ligaments from which the capsule tissue is derived. The movement and mixing of SF volume with flexion determine the mechanical and biological fluid environment within the knee joint. Joint fluid movement and capsular strains affect synovial cell biology and likely modulate trans-synovial transport.  相似文献   

12.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   

13.
The problem of modelling stresses incurred at the finger joints is critical to the design of durable joint replacements in the hand. The goal of this study was to characterise the forces and stresses at the finger and thumb joints occurring during activities such as typing at a keyboard, playing piano, gripping a pen, carrying a weight and opening a jar. The metacarpal and proximal phalanx were modelled using a COMSOL-based finite element analysis. Analysis of these activities indicates that joint forces in excess of 100 N may be common at the metacarpophalangeal joint (MCP) due to carrying objects such as groceries or while opening jars. The model predicted that stresses in excess of 2 MPa, similar to stresses at the hip, occur at the MCP with the properties of cancellous bone playing a significant role in the magnitude and distribution of stress.  相似文献   

14.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

15.
Finger joint coordination during tapping   总被引:1,自引:0,他引:1  
We investigated finger joint coordination during tapping by characterizing joint kinematics and torques in terms of muscle activation patterns and energy profiles. Six subjects tapped with their index finger on a computer keyswitch as if they were typing on the middle row of a keyboard. Fingertip force, keyswitch position, kinematics of the metacarpophalangeal (MCP) and the proximal and distal interphalangeal (IP) joints, and intramuscular electromyography of intrinsic and extrinsic finger muscles were measured simultaneously. Finger joint torques were calculated based on a closed-form Newton–Euler inverse dynamic model of the finger. During the keystroke, the MCP joint flexed and the IP joints extended before and throughout the loading phase of the contact period, creating a closing reciprocal motion of the finger joints. As the finger lifted, the MCP joint extended and the interphalangeal (IP) joints flexed, creating an opening reciprocal motion. Intrinsic finger muscle and extrinsic flexor activities both began after the initiation of the downward finger movement. The intrinsic finger muscle activity preceded both the IP joint extension and the onset of extrinsic muscle activity. Only extrinsic extensor activity was present as the finger was lifted. While both potential energy and kinetic energy are present and large enough to overcome the work necessary to press the keyswitch, the motor control strategies utilize the muscle forces and joint torques to ensure a successful keystroke.  相似文献   

16.
The aim of this study was to evaluate thumb postures, thumb movements and muscle activity when using mobile phones for SMS messaging and to determine whether there were differences in these exposures (a) across various mobile phone tasks, (b) between gender and (c) between subjects with and without musculoskeletal symptoms in shoulders and upper extremities. Fifty-six young adults (15 healthy and 41 with musculoskeletal symptoms) performed a series of distinct tasks on a mobile phone. Muscular load in four forearm/hand muscles in the right arm and the right and left trapezius muscles were measured using electromyography (EMG). Thumb movements were registered using an electrogoniometer. The results showed that postures (sitting or standing) and the type of mobile phone task (holding the phone versus texting) affected muscle activity and thumb positions. Females compared to males had higher muscle activity in the extensor digitorum and the abductor pollicis longus when entering SMS messages and tended to have greater thumb abduction, higher thumb movement velocities and fewer pauses in the thumb movements. Subjects with symptoms had lower muscle activity levels in the abductor pollicis longus and tended to have higher thumb movement velocities and fewer pauses in the thumb movements compared to those without symptoms.  相似文献   

17.
Manual dexterity varies across species of primates in accord with hand morphology and degree of fine motor control of the digits. Platyrrhine monkeys achieve less direct opposition between thumb and index finger than that of catarrhine primates, and many of them typically whole-hand grip. However, tufted capuchins (Cebus apella), exhibit a degree of independent control of the digits and effective thumb–forefinger opposition. We report how capuchins prehended small objects, with particular attention to the form of sequential fine movements of the fingers, choice of hand, and differences between the two hands in the temporal properties of reaching and grasping. We compare these actions across tasks with differing demands for fine motor control. For tasks that required all the digits to flex in synchrony, capuchins displayed smooth, fast, and efficient reach-to-grasp movements and a higher endurance than for tasks requiring more complex digital coordination. These latter tasks induced a slightly differentiated preshaping of the hand when approaching the objects, indicating preparation for grasping in advance of contact with the object. A right-hand preponderance for complex digital coordination was evident. The monkeys coordinated their fingers rather poorly at the substrate, and they took longer to achieve control of the objects when complex coordination was required than when simultaneous flexion was sufficient. We conclude that precise finger coordination is more effortful and less well coordinated, and the coordination is less lateralized, in capuchins than in catarrhine primates.  相似文献   

18.
A marker-based kinematic hand model to quantify finger postures was developed and compared to manual goniometric measurements. The model was implemented with data collected from static postures of five subjects. The metacarpal phalangeal (MCP) and proximal interphalangeal (PIP) joints were positioned in flexion of approximately 30, 60, and 90 degrees for 5 subjects. Wrist flexion/extension and ulnar/radial deviations were also examined. The model-based angles for the MCP and PIP joints were not statistically equivalent to the goniometric measurements, with differences of -1.8 degrees and +3.5 degrees, respectively. Differences between the two measurement methods for the MCP and PIP were found to be a function of the posture (i.e., 150, 120, or 90 degree blocks) used. Wrist measurements differed by -4.0 degrees for ulnar/radial deviation and +5.2 degrees for flexion/extension. Much of the difference between the model and goniometric measurements is believed due to inaccuracies in the goniometric measurements. The proposed model is useful for future investigations of finger-intensive activities by supplying accurate and unbiased measures of joint angles.  相似文献   

19.
A kinematic model has been developed for simulation and prediction of the prehensile capabilities of the human hand. The kinematic skeleton of the hand is characterized by ideal joints and simple segments. Finger-joint angulation is characterized by yaw (abduction-adduction), pitch (flexion-extension) and roll (axial rotation) angles. The model is based on an algorithm that determines contact between two ellipsoids, which are used to approximate the geometry of the cutaneous surface of the hand segments. The model predicts the hand posture (joint angles) for power grasp of ellipsoidal objects by 'wrapping' the fingers around the object. Algorithms for two grip types are included: (1) a transverse volar grasp, which has the thumb abducted for added power; and (2) a diagonal volar grasp, which has the thumb adducted for an element of precision. Coefficients for estimating anthropometric parameters from hand length and breadth are incorporated in the model. Graphics procedures are included for visual display of the model. In an effort to validate the predictive capabilities of the model, joint angles were measured on six subjects grasping circular cylinders of various diameters and these measured joint angles were compared with angles predicted by the model. Sensitivity of the model to the various input parameters was also determined. On an average, the model predicted joint flexion angles that were 5.3% or 2.8 degrees +/- 12.2 degrees larger than the measured angles. Good agreement was found for the MCP and PIP joints, but results for DIP were more variable because of its dependence on the predictions for the proximal joints.  相似文献   

20.
Reaching movements to spatial targets require motor patterns at the shoulder to be coordinated carefully with those at the elbow to smoothly move the hand through space. While the motor cortex is involved in this volitional task, considerable debate remains about how this cortical region participates in planning and controlling movement. This article reviews two opposing interpretations of motor cortical function during multi-joint movements. On the one hand, studies performed predominantly on single-joint movement generally support the notion that motor cortical activity is intimately involved in generating motor patterns at a given joint. In contrast, studies on reaching demonstrate correlations between motor cortical activity and features of movement related to the hand, suggesting that the motor cortex may be involved in more global features of the task. Although this latter paradigm involves a multi-joint motor task in which neural activity is correlated with features of movement related to the hand, this neural activity is also correlated to other movement variables. Therefore it is difficult to assess if and how the motor cortex contributes to the coordination of motor patterns at different joints. In particular, present paradigms cannot assess whether motor cortical activity contributes to the control of one joint or multiple joints during whole-arm tasks. The final point discussed in this article is the development of a new experimental device (KINARM) that can both monitor and manipulate the mechanics of the shoulder and elbow independently during multi-joint motor tasks. It is hoped that this new device will provide a new approach for examining how the motor cortex is involved in motor coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号