首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition of wound-ethylene by eight structural analogues of 1-aminocyclopropane-1-carboxylic acid (ACC) studied seperately was investigated in unripe tomato fruit discs (Lycopersicum esculentum). The compounds tested were: trans-2-phenylcyclopropane-1-carboxylic acid (PCCA), cyclopropane-1,1-dicarboxylic acid (CDA), cyclopropylamine (CPA), cyclopropyl methyl ketone (CMK), chrysanthemyl alcohol (CHRA), 2-methyl cyclopropanecarboxylic acid (MCA), cyclopropanecarboxylic acid (CCA), 2-methyl-cyclopropane-methanol (2-MCM). The level of inhibition was a function of treatment concentration and time. Differential inhibition induced by the tested compounds was related to their structure.  相似文献   

2.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

3.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

4.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

5.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

6.
Methyl jasmonate (JA-Me), applied to dendrobium and petunia flowers either as an aqueous solution through the cut stem or stigma, or as a gas, accelerated senescence. The rate of appearance of wilting symptoms was directly related to the amount of JA-Me applied to the flowers. JA-Me increased ethylene production by the flowers, irrespective of application method, and this effect was also proportional to the dose of the compound. In both dendrobium and petunia flowers, the JA-Me induced increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid content followed similar patterns. Aminooxyacetic acid, an inhibitor of ACC-synthase, and silver-thiosulfate, an inhibitor of ethylene action, completely inhibited the effects of JA-Me. It is concluded that JA-Me enhances petunia and dendrobium flower senescence via the promotion of ACC and ethylene production.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - Fl flower - JA jasmonic acid - JA-Me jasmonic acid methyl ester - LOX lipoxygenase - PLase A A-type phospholipase - STS silver-thiosulfate  相似文献   

7.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

8.
Capillary electrophoresis revealed that the endogenous level of ACC (1-aminocyclopropane-1-carboxylic acid) in the gametophytes of Anemia phyllitidis was elevated during GA3-induced male determination, whereas AOA (aminooxyacetic acid, specific inhibitor of ACC synthase) in untreated as well as in the GA3-treated gametophytes decreased concentration of ACC. The mechanism of ethylene involvement in controlling antheridiogenesis reflected at the level of ACC, which is supposed to mediate interactions between ethylene and gibberellins, is proposed.  相似文献   

9.
G. Bufler  Y. Mor  M. S. Reid  S. F. Yang 《Planta》1980,150(5):439-442
The rise in ethylene production accompanying the respiration climacteric and senescence of cut carnation flowers (Dianthus caryophyllus L. cv. White Sim) was associated with a 30-fold increase in the concentration of 1-aminocyclopropane-1-carboxylic acid (ACC) in the petals (initial content 0.3 nmol/g fresh weight). Pretreatment of the flowers with silver thiosulfate (STS) retarded flower senescence and prevented the increase in ACC concentration in the petals. An increase in ACC in the remaining flower parts, which appeared to precede the increase in the petals, was only partially prevented by the STS pretreatment. Addition of aminoxyacetic acid (2 mM) to the solution in which the flowers were kept completely inhibited accumulation of ACC in all flower parts.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA -aminoxyacetic acid - STS silver thiosulfate complex  相似文献   

10.
Cyclopropane-1,1-dicarboxylic acid (CDA) and trans-2-phenylcyclopropane-1-carboxylic acid (PCCA) are the main representatives of a group of compounds that are structural analogues of 1-aminocyclopropane-1-carboxylic acid (ACC) and have been proved to have an inhibitory effect on the wound ethylene produced by Lycopersicum esculentum fruit discs. During the experiments, that were carried out in this work the inhibition pattern of PCCA and CDA were studied when tested on partially purified apple ACO and their Ki values were determined. A mechanistic proposal was given, in order to explain the kinetic behaviour of the inhibitors. The common feature of these molecules is their cyclopropane ring, with different substitutes mainly at the positions C1 and C2. Two other compounds with similar structure where also tested as inhibitors, in order to clarify the relationship between structure and activity. These compounds are: 2-methyl cyclopropanecarboxylic acid (MCA), and cyclopropanecarboxylic acid (CCA).  相似文献   

11.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

12.
A simple, rapid, direct method for the HPLC analysis of 1-aminocyclopropane-1-carboxylic acid (ACC) as its o-phthaldialdehyde derivative is described. The method is sensitive to about 1 pmol and can be used on plant tissue extracts with no cleanup. It will prove valuable in plant extracts where the chemical conversion of ACC in the tissue extracts to ethylene is variable, or when analyzing the specific radioactivity of ACC produced from radiolabeled precursors.  相似文献   

13.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

14.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

15.
 Seedlings of papaya (Carica papaya L. var. Solo) were transplanted to pots with or without an arbuscular mycorrhizal (AM) fungus (Gigaspora margarita Becker and Hall). After 3 months, half the plants were subjected to water stress by withdrawing irrigation. The leaf water potential (LWP) was measured during 20 days of water-stress treatment and then the plants were harvested. Root ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) concentrations were measured and plant fresh weight determined. The LWP decreased during the water-stress treatment and this decrease was more severe in the non-AM plants. Plant fresh weight was higher for AM than non-AM plants under both conditions. Under well-irrigated conditions, the ethylene concentration in the roots was increased by the presence of AM, although there was no significant difference between AM and non-AM roots in ACC levels. ACC increased in both AM and non-AM roots under water-stress conditions. The water-stress treatment resulted in a marked increase in ethylene concentration in non-AM roots but the concentration in AM roots was slightly lower than under normal conditions. Accepted: 7 July 2000  相似文献   

16.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

17.
Y. Liu  N. E. Hoffman  S. F. Yang 《Planta》1985,164(4):565-568
The increase in ethylene formation and in 1-aminocyclopropane-1-carboxylic acid (ACC) content in flavedo tissue of grapefruit (Citrus paradisi Macfad. cv. Ruby Red) in response to excision was markedly inhibited by exogenous ethylene. Ethylene treatment inhibited the synthesis of ACC, but increased the tissue's capability to malonylate ACC to N-malonyl-ACC, resulting in further reduction in the endogenous ACC content. The development of extractable ACC-malonyl-transferase activity in the tissue was markedly promoted by treatment with exogenous ethylene. These results indicate that the autoinhibition of ethylene production in this tissue results not only from suppression of ACC synthesis, but also from promotion of ACC malonylation; both processes reduce the availability of ACC for ethylene synthesis.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethyoxyvinylglycine (2-amino-4-(2-aminoexthoxy)-trans-3-butenoic acid) - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid  相似文献   

18.
Growth promotion of pistils in carnation buds ( Dianthus caryophyllus L., cv. White Sim) by 1-aminocyclopropane-1-carboxylic acid (ACC) can be reversed by administering silver thiosulphate via the stem or 2,5-norbornadiene in the ambient atmosphere. Double reciprocal plots of relative style growth versus ACC concentration at different inhibitor concentrations suggest the inhibition to be competitive in both cases.  相似文献   

19.
During the hypersensitive reaction of Samsun NN tobacco to tobacco mosaic virus (TMV) the inoculated leaves synthesize large quantities of ethylene. At the same time, 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) accumulates. Smaller amounts of MACC are formed concomitant with ethylene synthesis during the normal development of tobacco leaves. The conjugate appears neither to be hydrolysed to liberate ACC, nor to be transported to other plant parts. Its accumulation thus reflects the history of the operation of the pathway of ethylene synthesis in the leaf. In floating leaf discs exogenously applied ACC was converted only slowly to both ethylene and MACC. More ethylene and less MACC were produced in darkness than in light, suggesting that environmental conditions may influence the ratio at which ACC in converted to either ethylene or MACC.  相似文献   

20.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号