首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Iron regulatory proteins (IRP) are sequence-specific RNA-binding proteins that mediate iron-responsive gene regulation in animals. IRP1 is also the cytosolic isoform of aconitase (c-aconitase). This latter activity could complement a mitochondrial aconitase mutation (aco1) in Saccharomyces cerevisiae to restore glutamate prototrophy. In yeast, the c-aconitase activity of IRP1 was responsive to iron availability in the growth medium. Although IRP1 expression rescued aco1 yeast from glutamate auxotrophy, cells remained growth-limited by glutamate, displaying a slow-growth phenotype on glutamate-free media. Second site mutations conferring enhanced cytosolic aconitase-dependent (ECA) growth were recovered. Relative c-aconitase activity was increased in extracts of strains harboring these mutations. One of the ECA mutations was found to be in the gene encoding cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDP2). This mutation, an insertion of a Ty delta element into the 5' region of IDP2, markedly elevates expression of Idp2p in glucose media. Our results demonstrate the physiological significance of the aconitase activity of IRP1 and provide insight into the role of c-aconitase with respect to iron and cytoplasmic redox regulation.  相似文献   

3.
Iron may populate distinct hepatocellular iron pools that differentially regulate expression of proteins such as ferritin and transferrin receptor (TfR) through iron-regulatory mRNA-binding proteins (IRPs), and may additionally regulate uptake and accumulation of non-transferrin-bound iron (NTBI). We examined iron-regulatory protein (IRP) binding activity and ferritin/TfR expression in human hepatoma (HepG2) cells exposed to iron at different levels for different periods. Several iron-dependent RNA-binding activities were identified, but only IRP increased with beta-mercaptoethanol. With exposures between 0 and 20 microg/ml iron, decreases in IRP binding accompanied large changes in TfR and ferritin expression, while chelation of residual iron with deferoxamine (DFO) caused a large increase in IRP binding with little additional effect on TfR or ferritin expression. Cellular iron content increased beyond 4 days of exposure to iron at 20 microg/ml, when IRP binding, TfR, and ferritin had all reached stable levels. However, iron content of the cells plateaued by 7 days, or decreased with 24 h exposure to very high concentrations (>50 microg/ml) of iron. These results indicate that iron-replete HepG2 cells exhibit a narrow range of maximal responsiveness of the IRP-regulatory mechanism, whose functional response is blunted both by excessive iron exposure and by removal of iron from a chelatable pool. HepG2 cells are able to limit iron accumulation upon higher or prolonged exposure to NTBI, apparently independent of the IRP mechanism.  相似文献   

4.
5.
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.  相似文献   

6.
7.
8.
9.
10.
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell.  相似文献   

11.
Iron and oxygen (O2) are intimately associated in many well characterized patho-physiological processes. These include oxidation of the [4Fe-4S] cluster of mitochondrial aconitase and inactivation of this Krebs cycle enzyme by the superoxide anion (O2*-), a product of the one-electron of reduction O2. In contrast to the apparent toxicity of this reaction, the biological consequences of O2*- -mediated inactivation of the cytosolic counterpart of mitochondrial aconitase, commonly known as iron regulatory protein 1 (IRP1), are not clear. Apart from its ability to convert citrate to iso-citrate, IRP1 in its apo-form binds to iron-responsive elements in the untranslated regions of mRNAs coding for proteins involved in iron metabolism, to regulate their synthesis and thus control the cellular homeostasis of this metal. Here, we show that in superoxide dismutase 1 (SOD1) knock-out mice, lacking Cu,Zn-SOD, an enzyme that acts to reduce the concentration of O2*- mainly in cytosol, not only is aconitase activity of IRP1 inhibited but the level of IRP1 is also strongly decreased. Despite such an evident alteration in IRP1 status, SOD1-deficient mice display a normal iron metabolism phenotype. Our findings clearly show that under conditions of O2*- -mediated oxidative stress, IRP1 is not essential for the maintenance of iron metabolism in mammals.  相似文献   

12.
13.
14.
15.
16.
17.
Intracellular iron homeostasis is regulated, in part, by interactions between iron-regulatory proteins (IRP1 and IRP2) and iron-responsive elements (IREs) in ferritin and transferrin receptor mRNAs. In addition to iron, cellular oxidative stress induced by H(2)O(2), nitric oxide, and hypoxia, and hormonal activation by thyroid hormone and erythropoeitin have each been shown to regulate IRP binding to IREs. Hormonal signals, in particular mediated through protein kinase C (PKC), play a central role in the modulation of IRP/IRE interactions since phorbol esters were shown to activate IRP binding (Eisenstein, R. S., Tuazon, P. T., Schalinske, K. L., Anderson, S. A., and Traugh, J. A. (1993) J. Biol. Chem. 268, 27363-27370). In pituitary thyrotrophs (TtT97), we found that thyrotropin releasing hormone (TRH) and epidermal growth factor (EGF) increased IRP binding to a ferritin IRE, dependent on PKC and mitogen-activated protein kinase (MAPK) activity. In contrast, TRH and EGF decreased IRP binding in pituitary lactotrophs (GH3), despite activation of PKC and MAPK. IRP1 and IRP2 levels remained constant and IRP2 binding was predominant throughout. TRH and EGF markedly decreased IRP binding in MAPK kinase inhibitor-treated GH3 cells, whereas, they increased IRP binding in phosphatase inhibitor-treated GH3 cells. IRE-dependent CAT reporter translational expression closely reflected IRP binding to the ferritin IRE in both GH3 and TtT97 cells. Interestingly, ferritin protein levels were regulated similarly by TRH in both cell lines. These data link two different cell receptor systems to common signaling pathways that regulate IRP binding and ferritin expression. Remarkably, for TRH and EGF, these effects may be PKC-dependent or -independent determined by the cell type.  相似文献   

18.
Interconversion of iron regulatory protein 1 (IRP1) with cytosolic aconitase (c-aconitase) occurs via assembly/disassembly of a [4Fe-4S] cluster. Recent evidence implicates oxidants in cluster disassembly. We investigated H(2)O(2)-initiated Fe-S cluster disassembly in c-aconitase expressed in Saccharomyces cerevisiae. A signal for [3Fe-4S] c-aconitase was detected by whole-cell EPR of aerobically grown, aco1 yeast expressing wild-type IRP1 or a S138A-IRP1 mutant (IRP1(S138A)), providing the first direct evidence of a 3Fe intermediate in vivo. Exposure of yeast to H(2)O(2) increased this 3Fe c-aconitase signal up to 5-fold, coincident with inhibition of c-aconitase activity. Untreated yeast expressing IRP1(S138D) or IRP1(S138E), which mimic phosphorylated IRP1, failed to give a 3Fe signal. H(2)O(2) produced a weak 3Fe signal in yeast expressing IRP1(S138D). Yeast expressing IRP1(S138D) or IRP1(S138E) were the most sensitive to inhibition of aconitase-dependent growth by H(2)O(2) and were more responsive to changes in media iron status. Ferricyanide oxidation of anaerobically reconstituted c-aconitase yielded a strong 3Fe EPR signal with wild-type and S138A c-aconitases. Only a weak 3Fe signal was obtained with S138D c-aconitase, and no signal was obtained with S138E c-aconitase. This, paired with loss of c-aconitase activity, strongly argues that the Fe-S clusters of these phosphomimetic c-aconitase mutants undergo more complete disassembly upon oxidation. Our results demonstrate that 3Fe c-aconitase is an intermediate in H(2)O(2)-initiated Fe-S cluster disassembly in vivo and suggest that cluster assembly/disassembly in IRP1 is a dynamic process in aerobically growing yeast. Further, our results support the view that phosphorylation of IRP1 can modulate its response to iron through effects on Fe-S cluster stability and turnover.  相似文献   

19.
The Arabidopsis NPR1 gene is a positive regulator of inducible plant disease resistance. Expression of NPR1 is induced by pathogen infection or treatment with defense-inducing compounds such as salicylic acid (SA). Transgenic plants overexpressing NPR1 exhibit enhanced resistance to a broad spectrum of microbial pathogens, whereas plants underexpressing the gene are more susceptible to pathogen infection. These results suggest that regulation of NPR1 gene expression is important for the activation of plant defense responses. In the present study, we report the identification of W-box sequences in the promoter region of the NPR1 gene that are recognized specifically by SA-induced WRKY DNA binding proteins from Arabidopsis. Mutations in these W-box sequences abolished their recognition by WRKY DNA binding proteins, rendered the promoter unable to activate a downstream reporter gene, and compromised the ability of NPR1 to complement npr1 mutants for SA-induced defense gene expression and disease resistance. These results provide strong evidence that certain WRKY genes act upstream of NPR1 and positively regulate its expression during the activation of plant defense responses. Consistent with this model, we found that SA-induced expression of a number of WRKY genes was independent of NPR1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号