首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
3.
4.
A class of helix-loop-helix (HLH) proteins, including E2A (E12 and E47), E2-2, and HEB, that bind in vitro to DNA sequences present in the immunoglobulin (Ig) enhancers has recently been identified. E12, E47, E2-2, and HEB are each present in B cells. The presence of many different HLH proteins raises the question of which of the HLH proteins actually binds the Ig enhancer elements in B cells. Using monoclonal antibodies specific for both E2A and E2-2, we show that both E2-2 and E2A polypeptides are present in B-cell-specific Ig enhancer-binding complexes. E2-box-binding complexes in pre-B cells contain both E2-2 and E2A HLH subunits, whereas in mature B cells only E2A gene products are present. We show that the difference in E2-box-binding complexes in pre-B and mature B cells may be caused by differential expression of E2A and E2-2.  相似文献   

5.
6.
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent homodimers. The HLH domain can mediate heterodimer formation between either daughterless, E12, or E47 (Class A) and achaete-scute T3 or MyoD (Class B) to form proteins with high affinity for the kappa E2 site in the immunoglobulin kappa chain enhancer. The achaete-scute T3 and MyoD proteins do not form kappa E2-binding heterodimers together, and no active complex with N-myc was evident. The formation of a heterodimer between the daughterless and achaete-scute T3 products may explain the similar phenotypes of mutants at these two loci and the genetic interactions between them. A role of E12 and E47 in mammalian development, analogous to that of daughterless in Drosophila, is likely.  相似文献   

7.
8.
Although the ubiquitous helix-loop-helix (HLH) protein E12 does not homodimerize efficiently, the myogenic factor MyoD forms an avid DNA-binding heterodimer with E12 through the conserved HLH dimerization domain. However, the mechanism which ensures this selective dimerization is not understood at present. In our functional studies of various amino acid changes in the E12 HLH domain, we found that a single substitution in E12 helix 1 can abolish the effect of the E12 inhibitory domain and results in the efficient DNA binding of the E12 homodimer. Competition experiments revealed that the inhibitory domain, in fact, blocks the dimerization of E12 rather than DNA binding. MyoD contains two glutamic residues in helix 2 that are required for efficient dimerization with E12. More importantly, these residues were not essential for dimerization with E12 mutants in which the dimerization inhibitory domain had been relaxed, or for dimerization with E47 which does not contain the inhibitory domain owing to the use of an alternative exon. The positions of these glutamic residues are conserved among the four myogenic factors. Thus, members of the MyoD family of gene regulatory proteins can overcome the E12 dimerization inhibitory domain through a mechanism involving, in part, the negatively charged amino acid residues in helix 2. This result describes a novel mechanism facilitating the selective formation of the MyoD(MRF)-E12 heterodimer that enhances dimerization specificity and may apply to other members of the E-protein family.  相似文献   

9.
10.
Two recombinant baculoviruses BcV-myf4 and BcV-myf5 have been constructed to synthesize the human myogenic determination factors myogenin (myf4) and myf5 in eucaryotic cells. Both recombinant proteins are localized to the nucleus of virus-infected Spodoroptera frugiperda (sf) insect cells and can be recovered as soluble factors. The virus-produced proteins exhibit high-affinity binding to a muscle-specific DNA sequence in the presence of the ubiquitous helix-loop-helix (HLH) protein E12, but only marginal binding in unsupplemented sf nuclear extracts. Both baculovirus-encoded myogenic factors are able to heterooligomerize with E12 in the absence of DNA-binding sites. We conclude from our results that these muscle-specific HLH proteins produced in eucaryotic cells largely depend on dimerization with E12 or similar HLH proteins to recognize the myosin-light-chain-enhancer-MEF-1-binding site. We have no evidence for intracellular protein modifications exerting major effects on the interaction between these factors and DNA.  相似文献   

11.
S J Vitola  A Wang    X H Sun 《Nucleic acids research》1996,24(10):1921-1927
The E2A gene encodes two alternatively spliced products, E12 and E47. The two proteins differ in their basic helix-loop-helix motifs (bHLH), responsible for DNA binding and dimerization. Although both E12 and E47 can bind to DNA as heterodimers with tissue-specific bHLH proteins, E12 binds to DNA poorly as homodimers. An inhibitory domain in E12 has previously been found to prevent E12 homodimers from binding to DNA. By measuring the dissociation rates using filter binding and electrophoretic mobility shift assays, we have shown here that the inhibitory domain interferes with DNA binding by destabilizing the DNA-protein complexes. Furthermore, we have demonstrated that substitution of basic amino acids (not other amino acids) in the DNA-binding domain of E12 can increase the intrinsic DNA-binding activity of E12 and stabilize the binding complexes, thus alleviating the repression from the inhibitory domain. This ability of basic amino acids to stabilize DNA-binding complexes may be of biological significance in the case of myogenic bHLH proteins, which all possess two more basic amino acids in their DNA binding domain than E12. To function as heterodimers with E12, the myogenic bHLH proteins may need stronger DNA binding domains.  相似文献   

12.
13.
14.
15.
Cell-specific expression of the insulin gene is dependent on a conserved 8-basepair sequence, GCCATCTG, present in two copies in the 5' flanking DNA of the rat insulin 1 gene (Nir and Far elements). A protein factor with well characterized binding affinities binds to this sequence and is unique to the nuclei of insulin-producing cells. Using the Nir element as a probe to screen a hamster insulinoma cDNA expression library, we cloned two cDNA inserts that encode two related helix-loop-helix DNA-binding proteins: Syrian hamster Pan-1 (shPan-1) and Syrian hamster Pan-2 (shPan-2). These clones have minimal differences from the previously reported human E47/E12 and rat PAN (rPan) DNA-binding proteins. In vitro translated protein products of both clones bound the insulin gene promoter Nir and far elements as well as the E2 elements of the mu heavy chain and kappa light chain immunoglobulin genes. Treating insulinoma cell nuclear extract with antiserum selectively directed to each of the two shPan proteins demonstrated the presence of each form of shPan in separate DNA-binding complexes, which together form the previously described, cell-specific, Nir element-binding complex. We conclude that shPan-1 and shPan-2 are the hamster homologs of the ubiquitous E47/E12 and rPan proteins, but form parts of distinct DNA-binding complexes apparently found only in the nuclei of insulin-producing cells.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号