首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
蛋白质入核转运的机制和研究进展   总被引:2,自引:0,他引:2  
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述.  相似文献   

2.
Nuclear pore complexes (NPCs) are multiprotein complexes consisting of nucleoporins and function in transport between the nucleus and the cytoplasm. In yeast, nucleoporins have also been linked to gene expression as well as to chromatin insulating activity. Recently, we identified genomic regions that interact with nucleoporins in Drosophila using DamID technology. We found that nucleoporins in the nucleoplasm interact with active genes and stimulate gene expression. However, genes interacting with nucleoporins at the NPC itself show average gene expression and it remains unclear why they interact with the NPC. Here, we further investigated the function of the genome-NPC interactions. First, to investigate whether a different technique would lead to similar results, we compared our nucleoporin DamID data to recently published nucleoporin chromatin immunoprecipitation (ChIP) data. Then, to further understand the function of interactions between the genome and NPCs, we analyzed the relationship between NPC-interacting genomic regions and chromatin insulators. We found that the insulator protein Su(Hw) was enriched within and near NPC-interacting genomic regions, suggesting a role of this protein in chromatin architecture close to the NPC. This suggests that the NPC may have a function in the structural organization of the genome.  相似文献   

3.
Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo–receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.  相似文献   

4.
Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs) whose complex architecture is generated from a set of only approximately 30 proteins, termed nucleoporins. Here, we explore the domain structure of Nup133, a nucleoporin in a conserved NPC subcomplex that is crucial for NPC biogenesis and is believed to form part of the NPC scaffold. We show that human Nup133 contains two domains: a COOH-terminal domain responsible for its interaction with its subcomplex through Nup107; and an NH2-terminal domain whose crystal structure reveals a seven-bladed beta-propeller. The surface properties and conservation of the Nup133 beta-propeller suggest it may mediate multiple interactions with other proteins. Other beta-propellers are predicted in a third of all nucleoporins. These and several other repeat-based motifs appear to be major elements of nucleoporins, indicating a level of structural repetition that may conceptually simplify the assembly and disassembly of this huge protein complex.  相似文献   

5.
Nuclear pore complexes (NPCs) are 40-60 MDa protein assemblies embedded in the nuclear envelope of eukaryotic cells. NPCs exclusively mediate all transport between cytoplasm and nucleus. The nucleoporins that build the NPC are arranged in a stable core of module-like subcomplexes with eight-fold rotational symmetry. To gain insight into the intricate assembly of the NPC, we have solved the crystal structure of a protein complex between two nucleoporins, human Nup107 and Nup133. Both proteins form elongated structures that interact tightly via a compact interface in tail-to-tail fashion. Additional experiments using structure-guided mutants show that Nup107 is the critical anchor for Nup133 to the NPC, positioning Nup133 at the periphery of the NPC. The significant topological differences between Nup107 and Nup133 suggest that *-helical nucleoporin domains of the NPC scaffold fall in different classes and fulfill largely nonredundant functions.  相似文献   

6.
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-α and -β (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.  相似文献   

7.
Proteomic analysis of the mammalian nuclear pore complex   总被引:35,自引:0,他引:35  
As the sole site of nucleocytoplasmic transport, the nuclear pore complex (NPC) has a vital cellular role. Nonetheless, much remains to be learned about many fundamental aspects of NPC function. To further understand the structure and function of the mammalian NPC, we have completed a proteomic analysis to identify and classify all of its protein components. We used mass spectrometry to identify all proteins present in a biochemically purified NPC fraction. Based on previous characterization, sequence homology, and subcellular localization, 29 of these proteins were classified as nucleoporins, and a further 18 were classified as NPC-associated proteins. Among the 29 nucleoporins were six previously undiscovered nucleoporins and a novel family of WD repeat nucleoporins. One of these WD repeat nucleoporins is ALADIN, the gene mutated in triple-A (or Allgrove) syndrome. Our analysis defines the proteome of the mammalian NPC for the first time and paves the way for a more detailed characterization of NPC structure and function.  相似文献   

8.
The nuclear pore complex (NPC) mediates protein and RNP import in and RNA and RNP export out of the nucleus of eukaryotic cells. Due to its genetic tractability, yeast offers a versatile system for investigating the chemical composition and molecular architecture of the NPC. In this context, protein A tagging is a commonly used tool for characterizing and localizing yeast NPC proteins (nucleoporins). By preembedding anti-protein A immunogold electron microscopy (immunogold EM), we have localized two yeast nucleoporins, Nsp1p and Nic96p, in mutant yeast strains recombinantly expressing these nucleoporins tagged with four (Nsp1p) or two (Nic96p) IgG binding domains of protein A (i.e., ProtA-Nsp1p and ProtA-Nic96p). We have compared the location of the recombinant fusion proteins ProtA-Nsp1p and ProtA-Nic96p (i.e., as specified by their protein A tag) to the location of authentic Nsp1p and Nic96p (i.e., as defined by the epitopes recognized by corresponding nucleoporin antibodies) and found all of them to reside at the same three NPC sites. Hence, recombinant expression and protein A tagging of the nucleoporins Nsp1p and Nic96p have not caused any significant mislocation of the fusion proteins and thus enabled mapping of these two yeast nucleoporins at the ultrastructural level in a faithful manner.  相似文献   

9.
The nuclear pore complex (NPC) facilitates nucleocytoplasmic transport, a crucial process for various cellular activities. The NPC comprises ~30 nucleoporins and is well characterized in vertebrates and yeast. However, only eight plant nucleoporins have been identified, and little information is available about the complete molecular structure of plant NPCs. In this study, an interactive proteomic approach was used to identify Arabidopsis thaliana nucleoporins. A series of five cycles of interactive proteomic analysis was performed using green fluorescent protein (GFP)-tagged nucleoporins. The identified nucleoporins were then cloned and subcellular localization analyses were performed. We found that the plant NPC contains at least 30 nucleoporins, 22 of which had not been previously annotated. Surprisingly, plant nucleoporins shared a similar domain organization to their vertebrate (human) and yeast (Saccharomyces cerevisiae) counterparts. Moreover, the plant nucleoporins exhibited higher sequence homology to vertebrate nucleoporins than to yeast nucleoporins. Plant NPCs lacked seven components (NUCLEOPORIN358 [Nup358], Nup188, Nup153, Nup45, Nup37, NUCLEAR DIVISION CYCLE1, and PORE MEMBRANE PROTEIN OF 121 kD) that were present in vertebrate NPCs. However, plants possessed a nucleoporin, Nup136/Nup1, that contained Phe-Gly repeats, and sequence analysis failed to identify a vertebrate homolog for this protein. Interestingly, Nup136-GFP showed greater mobility on the nuclear envelope than did other nucleoporins, and a Nup136/Nup1 deficiency caused various defects in plant development. These findings provide valuable new information about plant NPC structure and function.  相似文献   

10.
Macromolecular transport between the nucleus and cytoplasm occurs through the nuclear pore complexes (NPCs). The NPC in the budding yeast Saccharomyces cerevisiae is a 60-MDa structure embedded in the nuclear envelope and composed of ~30 proteins, termed nucleoporins or nups. Here we present a large-scale analysis of spatial relationships between nucleoporins using fluorescence resonance energy transfer (FRET) in living yeast cells. Energy transfer was measured in a panel of strains, each of which coexpresses the enhanced cyan and yellow fluorescent proteins as fusions to distinct nucleoporins. With this approach, we have determined 13 nucleoporin pairs yielding FRET signals. Independent experiments are consistent with the FRET results: Nup120 localization is perturbed in the nic96-1 mutant, as is Nup82 localization in the nup116Delta mutant. To better understand the spatial relationship represented by an in vivo FRET signal, we have investigated the requirements of these signals. We demonstrate that in one case FRET signal is lost upon insertion of a short spacer between the nucleoporin and its enhanced yellow fluorescent protein label. We also show that the Nup120 FRET signals depend on whether the fluorescent moiety is fused to the N- or C-terminus of Nup120. Combined with existing data on NPC structure, the FRET pairs identified in this study allow us to propose a refined molecular model of the NPC. We suggest that the approach may serve as a prototype for the in situ study of other large macromolecular complexes.  相似文献   

11.
The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature large, natively unfolded domains with phenylalanine-glycine repeats (FG domains). These domains of nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results showed that its FG motifs function as intramolecular cohesion elements that impart order to the FG domain and compact its ensemble of structures into native premolten globular configurations. At the NPC, the FG motifs of nucleoporins may exert this cohesive effect intermolecularly as well as intramolecularly to form a malleable yet cohesive quaternary structure composed of highly flexible polypeptide chains. Dynamic shifts in the equilibrium or competition between intra- and intermolecular FG motif interactions could facilitate the rapid and reversible structural transitions at the NPC conduit needed to accommodate passing karyopherin-cargo complexes of various shapes and sizes while simultaneously maintaining a size-selective gate against protein diffusion.  相似文献   

12.
Macromolecular assemblies can be intrinsically refractive to classical structural analysis, due to their size, complexity, plasticity and dynamic nature. One such assembly is the nuclear pore complex (NPC). The NPC is formed from ~450 copies of 30 different proteins, called nucleoporins, and is the sole mediator of exchange between the nucleus and the cytoplasm in eukaryotic cells. Despite significant progress, it has become increasingly clear that new approaches, integrating different sources of structural and functional data, will be needed to understand the functional biology of the NPC. Here, we discuss the latest approaches trying to address this challenge.  相似文献   

13.
14.
Transport of proteins into and out of the nucleus occurs through nuclear pore complexes (NPCs) and is mediated by the interaction of transport factors with nucleoporins at the NPC. Nuclear import of proteins containing classical nuclear localization signals (NLSs) is mediated by a heterodimeric protein complex, composed of karyopherin α and β1, that docks via β1 the NLS-protein to the NPC. The GTPase Ran; the RanGDP binding protein, p10; and the RanGTP binding protein, RanBP1 are involved in translocation of the docked NLS-protein into the nucleus. Recently, new distinct nuclear import and export pathways that are mediated by members of the karyopherin β family have been discovered. Karyopherin β2 mediates import of mRNA binding proteins, whereas karyopherin β3 and β4 mediate import of a set of ribosomal proteins. Two other β karyopherin family members, CRM1 and CAS, mediate export of proteins containing leucine-rich nuclear export signals (NES) and reexport of karyopherin α, respectively. This growing family contains new members that constitute potential transport factors for cargoes yet to be identified in the future. The common features of the members of karyopherin β family are the ability to bind RanGTP and the ability to interact directly with nucleoporins at the NPC. The challenge for the future will be to identify the distinct or, perhaps, overlapping cargo(es) for each member of the karyopherin β superfamily and to characterize the molecular mechanisms of translocation of karyopherins together with their cargoes through the NPC. J. Cell. Biochem. 70:231–239, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

15.
Aitchison JD  Rout MP 《Genetics》2012,190(3):855-883
Exchange of macromolecules between the nucleus and cytoplasm is a key regulatory event in the expression of a cell's genome. This exchange requires a dedicated transport system: (1) nuclear pore complexes (NPCs), embedded in the nuclear envelope and composed of proteins termed nucleoporins (or "Nups"), and (2) nuclear transport factors that recognize the cargoes to be transported and ferry them across the NPCs. This transport is regulated at multiple levels, and the NPC itself also plays a key regulatory role in gene expression by influencing nuclear architecture and acting as a point of control for various nuclear processes. Here we summarize how the yeast Saccharomyces has been used extensively as a model system to understand the fundamental and highly conserved features of this transport system, revealing the structure and function of the NPC; the NPC's role in the regulation of gene expression; and the interactions of transport factors with their cargoes, regulatory factors, and specific nucleoporins.  相似文献   

16.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

17.
18.
Selective transport through the nuclear pore complex (NPC) requires nucleoporins containing natively unfolded phenylalanine-glycine (FG) domains. Several differing models for their dynamics within the pore have been proposed. We characterize the behavior of the FG nucleoporins in vivo using polarized fluorescence microscopy. Using nucleoporins tagged with green fluorescent protein along their FG domains, we show that some of these proteins are ordered, indicating an overall orientational organization within the NPC. This orientational ordering of the FG domains depends on their specific context within the NPC, but is independent of active transport and cargo load. For most nups, behavior does not depend on the FG motifs. These data support a model whereby local geometry constrains the orientational organization of the FG nups. Intriguingly, homologous yeast and mammalian proteins show conserved behavior, suggesting functional relevance. Our findings have implications for mechanistic models of NPC transport.  相似文献   

19.
The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.  相似文献   

20.
Messenger RNAs are exported from the nucleus as large ribonucleoprotein complexes (mRNPs). To date, proteins implicated in this process include TAP/Mex67p and RAE1/Gle2p and are distinct from the nuclear transport receptors of the beta-related, Ran-binding protein family. Mex67p is essential for mRNA export in yeast. Its vertebrate homolog TAP has been implicated in the export of cellular mRNAs and of simian type D viral RNAs bearing the constitutive transport element (CTE). Here we show that TAP is predominantly localized in the nucleoplasm and at both the nucleoplasmic and cytoplasmic faces of the nuclear pore complex (NPC). TAP interacts with multiple components of the NPC including the nucleoporins CAN, Nup98, Nup153, p62, and with three major NPC subcomplexes. The nucleoporin-binding domain of TAP comprises residues 508-619. In HeLa cells, this domain is necessary and sufficient to target GFP-TAP fusions to the nuclear rim. Moreover, the isolated domain strongly competes multiple export pathways in vivo, probably by blocking binding sites on the NPC that are shared with other transport receptors. Microinjection experiments implicate this domain in the export of specific CTE-containing RNAs. Finally, we show that TAP interacts with transportin and with two proteins implicated in the export of cellular mRNAs: RAE1/hGle2 and E1B-AP5. The interaction of TAP with nucleoporins, its direct binding to the CTE RNA, and its association with two mRNP binding proteins suggest that TAP is an RNA export mediator that may bridge the interaction between specific RNP export substrates and the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号