首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Protein function often requires large-scale domain motion. An exciting new development in the experimental characterization of domain motions in proteins is the application of neutron spin-echo spectroscopy (NSE). NSE directly probes coherent (i.e., pair correlated) scattering on the ~1-100 ns timescale. Here, we report on all-atom molecular-dynamics (MD) simulation of a protein, phosphoglycerate kinase, from which we calculate small-angle neutron scattering (SANS) and NSE scattering properties. The simulation-derived and experimental-solution SANS results are in excellent agreement. The contributions of translational and rotational whole-molecule diffusion to the simulation-derived NSE and potential problems in their estimation are examined. Principal component analysis identifies types of domain motion that dominate the internal motion's contribution to the NSE signal, with the largest being classic hinge bending. The associated free-energy profiles are quasiharmonic and the frictional properties correspond to highly overdamped motion. The amplitudes of the motions derived by MD are smaller than those derived from the experimental analysis, and possible reasons for this difference are discussed. The MD results confirm that a significant component of the NSE arises from internal dynamics. They also demonstrate that the combination of NSE with MD is potentially useful for determining the forms, potentials of mean force, and time dependence of functional domain motions in proteins.  相似文献   

2.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   

3.
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations.  相似文献   

4.
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.  相似文献   

5.
6.
《Biophysical journal》2021,120(17):3664-3675
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs’ allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.  相似文献   

7.
Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.  相似文献   

8.
A comparison of a series of extended molecular dynamics (MD) simulations of bacteriophage T4 lysozyme in solvent with X-ray data is presented. Essential dynamics analyses were used to derive collective fluctuations from both the simulated trajectories and a distribution of crystallographic conformations. In both cases the main collective fluctuations describe domain motions. The protein consists of an N- and C-terminal domain connected by a long helix. The analysis of the distribution of crystallographic conformations reveals that the N-terminal helix rotates together with either of these two domains. The main domain fluctuation describes a closure mode of the two domains in which the N-terminal helix rotates concertedly with the C-terminal domain, while the domain fluctuation with second largest amplitude corresponds to a twisting mode of the two domains, with the N-terminal helix rotating concertedly with the N-terminal domain. For the closure mode, the difference in hinge-bending angle between the most open and most closed X-ray structure along this mode is 49 degrees. In the MD simulation that shows the largest fluctuation along this mode, a rotation of 45 degrees was observed. Although the twisting mode has much less freedom than the closure mode in the distribution of crystallographic conformations, experimental results suggest that it might be functionally important. Interestingly, the twisting mode is sampled more extensively in all MD simulations than it is in the distribution of X-ray conformations. Proteins 31:116–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2, to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo “Venus flytrap” movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all‐atom molecular dynamics simulations of HisJ starting from four different conformations: apo‐open, apo‐closed, apo‐semiopen, and holo‐closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo‐closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter‐hinge strand and interdomain polar interactions contributed to the adoption of the closed apo‐conformations although they are up to 2.5‐fold less prevalent compared with the holo‐closed simulations. The overall sampling of the closed form by apo‐HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters. Proteins 2014; 82:386–398. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Functions of mammalian cell membrane microdomains being rich in glycosphingolipids, so-called rafts, are now one of the current hot topics in cell biology from the intimate relation to cell adhesion and signaling. However, little is known about the role of glycosphingolipids in the formation and stability of the domains. By the use of the inverse contrast variation method in small-angle neutron scattering (SANS), combined with small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS), we have determined an asymmetric internal structure of the bilayer of the small unilamellar vesicle (SUV) of monosialoganglioside (G(M1))-dipalmitoylphosphatidylcholine (DPPC) mixture ([G(M1)]:[DPPC] = 0.1:1). A direct method using a shell-model fitting with a size distribution function describes consistently all experimental results of SANS, SAXS, and DLS. We have found that G(M1) molecules predominantly localize at SUV outer surface to form a highly hydrophilic layer which is dehydrated with the rise of temperature from 25 degrees C to 55 degrees C accompanied by the conformational change of the oligosaccharide chains. The average SUV size determined is approximately 200 A, which is comparable to the reported value 260 +/- 130 A of glycosphingolipids microdomains. The present results suggest that the preferential asymmetric distribution of gangliosides is essential to define the size and stability of the domains.  相似文献   

11.
Many cellular proteins are multi-domain proteins. Coupled domain–domain interactions in these multidomain proteins are important for the allosteric relay of signals in the cellular signaling networks. We have initiated the application of neutron spin echo spectroscopy to the study of nanoscale protein domain motions on submicrosecond time scales and on nanometer length scale. Our NSE experiments reveal the activation of protein domain motions over a long distance of over more than 100 Å in a multidomain scaffolding protein NHERF1 upon binding to another protein, Ezrin. Such activation of nanoscale protein domain motions is correlated with the allosteric assembly of multi-protein complexes by NHERF1 and Ezrin. Here, we summarize the theoretical framework that we have developed, which uses simple concepts from nonequilibrium statistical mechanics to interpret the NSE data, and employs a mobility tensor to describe nanoscale protein domain motion. Extracting nanoscale protein domain motion from the NSE does not require elaborate molecular dynamics simulations, nor complex fits to rotational motion, nor elastic network models. The approach is thus more robust than multiparameter techniques that require untestable assumptions. We also demonstrate that an experimental scheme of selective deuteration of a protein subunit in a complex can highlight and amplify specific domain dynamics from the abundant global translational and rotational motions in a protein. We expect NSE to provide a unique tool to determine nanoscale protein dynamics for the understanding of protein functions, such as how signals are propagated in a protein over a long distance to a distal domain.  相似文献   

12.
《Biophysical journal》2020,118(9):2209-2219
An overlapping dinucleosome (OLDN) is a structure composed of one hexasome and one octasome and appears to be formed through nucleosome collision promoted by nucleosome remodeling factor(s). In this study, the solution structure of the OLDN was investigated through the integration of small-angle x-ray and neutron scattering (SAXS and SANS, respectively), computer modeling, and molecular dynamics simulations. Starting from the crystal structure, we generated a conformational ensemble based on normal mode analysis and searched for the conformations that reproduced the SAXS and SANS scattering curves well. We found that inclusion of histone tails, which are not observed in the crystal structure, greatly improved model quality. The obtained structural models suggest that OLDNs adopt a variety of conformations stabilized by histone tails situated at the interface between the hexasome and octasome, simultaneously binding to both the hexasomal and octasomal DNA. In addition, our models define a possible direction for the conformational changes or dynamics, which may provide important information that furthers our understanding of the role of chromatin dynamics in gene regulation.  相似文献   

13.
Large-scale domain motions of enzymes are often essential for their biological function. Phosphoglycerate kinase has a wide open domain structure with a hinge near the active center between the two domains. Applying neutron spin echo spectroscopy and small-angle neutron scattering we have investigated the internal domain dynamics. Structural analysis reveals that the holoprotein in solution seems to be more compact compared to the crystal structure but would not allow the functionally important phosphoryl transfer between the substrates if the protein were static. Brownian large-scale domain fluctuation dynamics on a timescale of 50 ns was revealed by neutron spin echo spectroscopy. The dynamics observed was compared to the displacement patterns of low-frequency normal modes. The displacements along the normal-mode coordinates describe our experimental results reasonably well. In particular, the domain movements facilitate a close encounter of the key residues in the active center to build the active configuration. The observed dynamics shows that the protein has the flexibility to allow fluctuations and displacements that seem to enable the function of the protein. Moreover, the presence of the substrates increases the rigidity, which is deduced from a faster dynamics with smaller amplitude.  相似文献   

14.
The statistical properties of fast protein-water motions are analyzed by dynamic neutron scattering experiments. Using isotopic exchange, one probes either protein or water hydrogen displacements. A moment analysis of the scattering function in the time domain yields model-independent information such as time-resolved mean square displacements and the Gauss-deviation. From the moments, one can reconstruct the displacement distribution. Hydration water displays two dynamical components, related to librational motions and anomalous diffusion along the protein surface. Rotational transitions of side chains, in particular of methyl groups, persist in the dehydrated and in the solvent-vitrified protein structure. The interaction with water induces further continuous protein motions on a small scale. Water acts as a plasticizer of displacements, which couple to functional processes such as open-closed transitions and ligand exchange.  相似文献   

15.
Molecular dynamics (MD) simulations have been used to model small-angle X-ray scattering (SAXS) data on aqueous solutions of four oligomeric segments of the glucan pullulan: the trimer G(3) (comprising one polymer repeating unit), the hexamer (G(3))(2), the nonamer (G(3))(3), and the dodecamer (G(3))(4). The AMBER force field was used in conjunction with the GB/SA continuum solvation model to calculate both the mean global dimensions of the oligomers from the limiting small angle scattering behavior and the shorter range structural information implicit in the Debye scattering function at larger scattering angles. This same force field and solvation treatment were employed earlier by Liu et al. (Macromolecules 1999, 32, 8611-8620) with apparent success in a rotational isomeric state (RIS) treatment of the same experimental data. The present work discloses that, despite numerical success in modeling the SAXS data, the RIS treatment, which includes only the interactions within dimeric segments of the polymer chain, fails to account accurately for excluded volume effects at the range of 3-12 sugar residues in the polymer backbone. It is suggested that MD simulations using continuum solvation models can be used to circumvent errors inherent in the computationally efficient RIS treatments of polymer nano- and picosecond dynamics while at the same time avoiding the heavy computational requirements of all-atom methods.  相似文献   

16.
Clarification of solution structure and its modulation in proteins and protein complexes is crucially important to understand dynamical ordering in macromolecular systems. Small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are among the most powerful techniques to derive structural information. Recent progress in sample preparation, instruments and software analysis is opening up a new era for small-angle scattering. In this review, recent progress and trends of SAXS and SANS are introduced from the point of view of instrumentation and analysis, touching on general features and standard methods of small-angle scattering. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

17.
A comparison of cross-linked and native gliadin suspensions, with respect to the state of protein globular structure was carried out using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheological analysis. Gliadin suspensions were also analyzed in the presence and absence of glycerol. DLS analysis showed that R(h) increased only with gliadin/EDC/NHS suspensions. However, Kratky plots revealed that gliadin and gliadin/l-cysteine maintained their globular shape even in absence or presence of glycerol. Rheological experiments revealed that gliadin and gliadin/l-cysteine suspension exhibited a similar profile with three main domains, and a sol-gel transition. Gliadin/EDC/NHS did not present any sol-gel transition, and this fact corroborates with DLS results and the hypothesis of lower protein-protein interaction, which are in agreement with G″>G'.  相似文献   

18.
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family.  相似文献   

19.
In order to understand the changes in protein dynamics that occur in the final stages of protein folding, we have used neutron scattering to probe the differences between a protein in its folded state and the molten globule states. The internal dynamics of bovine alpha-lactalbumin (BLA) and its molten globules (MBLA) have been examined using incoherent, quasielastic neutron scattering (IQNS). The IQNS results show length scale dependent, pico-second dynamics changes on length scales from 3.3 to 60 A studied. On shorter-length scales, the non-exchangeable protons undergo jump motions over potential barriers, as those involved in side-chain rotamer changes. The mean potential barrier to local jump motions is higher in BLA than in MBLA, as might be expected. On longer length scales, the protons undergo spatially restricted diffusive motions with the diffusive motions being more restricted in BLA than in MBLA. Both BLA and MBLA have similar mean square amplitudes of high frequency motions comparable to the chemical bond vibrational motions. Bond vibrational motions thus do not change significantly upon folding. Interestingly, the quasielastic scattering intensities show pronounced maxima for both BLA and MBLA, suggesting that "clusters" of atoms are moving collectively within the proteins on picosecond time scales. The correlation length, or "the cluster size", of such atom clusters moving collectively is dramatically reduced in the molten globules with the correlation length being 6.9 A in MBLA shorter than that of 18 A in BLA. Such collective motions may be important for the stability of the folded state, and may influence the protein folding pathways from the molten globules.  相似文献   

20.
Type 1 insulin-like growth factor receptor (IGF1R) is a membrane-spanning glycoprotein of the insulin receptor family that has been implicated in a variety of cancers. The key questions related to molecular mechanisms governing ligand recognition by IGF1R remain unanswered, partly due to the lack of testable structural models of apo or ligand-bound receptor complexes. Using a homology model of the IGF1R ectodomain IGF1RΔβ, we present the first experimentally consistent all-atom structural models of IGF1/IGF1RΔβ and IGF2/IGF1RΔβ complexes. Our explicit-solvent molecular dynamics (MD) simulation of apo-IGF1RΔβ shows that it displays asymmetric flexibility mechanisms that result in one of two binding pockets accessible to growth factors IGF1 and IGF2, as demonstrated via an MD-assisted Monte Carlo docking procedure. Our MD-generated ensemble of structures of apo and IGF1-bound IGF1RΔβ agrees reasonably well with published small-angle X-ray scattering data. We observe simultaneous contacts of each growth factor with sites 1 and 2 of IGF1R, suggesting cross-linking of receptor subunits. Our models provide direct evidence in favor of suggested electrostatic complementarity between the C-domain (IGF1) and the cysteine-rich domain (IGF1R). Our IGF1/IGF1RΔβ model provides structural bases for the observation that a single IGF1 molecule binds to IGF1RΔβ at low concentrations in small-angle X-ray scattering studies. We also suggest new possible structural bases for differences in the affinities of insulin, IGF1, and IGF2 for their noncognate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号