首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow-CAM linkage model ("clutch" model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.  相似文献   

2.
Motile cells transduce environmental chemical signals into mechanical forces to achieve properly controlled migration. This signal–force transduction is thought to require regulated mechanical coupling between actin filaments (F-actins), which undergo retrograde flow at the cellular leading edge, and cell adhesions via linker “clutch” molecules. However, the molecular machinery mediating this regulatory coupling remains unclear. Here we show that the F-actin binding molecule cortactin directly interacts with a clutch molecule, shootin1, in axonal growth cones, thereby mediating the linkage between F-actin retrograde flow and cell adhesions through L1-CAM. Shootin1–cortactin interaction was enhanced by shootin1 phosphorylation by Pak1, which is activated by the axonal chemoattractant netrin-1. We provide evidence that shootin1–cortactin interaction participates in netrin-1–induced F-actin adhesion coupling and in the promotion of traction forces for axon outgrowth. Under cell signaling, this regulatory F-actin adhesion coupling in growth cones cooperates with actin polymerization for efficient cellular motility.  相似文献   

3.
There is now considerable evidence of the importance of mechanical cues in neuronal development and regeneration. Motivated by the difference in the mechanical properties of the tissue environment between the peripheral (PNS) and central (CNS) nervous systems, we compare substrate-stiffness-dependent outgrowth and traction forces from PNS (dorsal root ganglion (DRG)) and CNS (hippocampal) neurons. We show that neurites from DRG neurons display maximal outgrowth on substrates with a Young's modulus of ~1000 Pa, whereas hippocampal neurite outgrowth is independent of substrate stiffness. Using traction force microscopy, we also find a substantial difference in growth cone traction force generation, with DRG growth cones exerting severalfold larger forces compared with hippocampal growth cones. The traction forces generated by DRG and hippocampal growth cones both increase with increasing stiffness, and DRG growth cones growing on substrates with a Young's modulus of 1000 Pa strengthen considerably after 18–30 h. Finally, we find that retrograde actin flow is almost three times faster in hippocampal growth cones than in DRG. Moreover, the density of paxillin puncta is significantly lower in hippocampal growth cones, suggesting that stronger substrate coupling of the DRG cytoskeleton is responsible for the remarkable difference in traction force generation. These findings reveal a differential adaptation of cytoskeletal dynamics to substrate stiffness in growth cones of different neuronal types, and highlight the potential importance of the mechanical properties of the cellular environment for neuronal navigation during embryonic development and nerve regeneration.  相似文献   

4.
Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation.  相似文献   

5.
Highlights? An attractive guidance cue, netrin-1, induces Pak1-mediated shootin1 phosphorylation ? Pak1-mediated shootin1 phosphorylation enhances clutch engagement at growth cones ? Pak1-mediated shootin1 phosphorylation promotes formation of traction forces ? Pak1-mediated shootin1 phosphorylation promotes axon outgrowth  相似文献   

6.
The cell adhesion molecule L1 (L1-CAM) plays critical roles in neurite growth. Its cytoplasmic domain (L1CD) binds to ankyrins that associate with the spectrin-actin network. This paper demonstrates that L1-CAM interactions with ankyrinB (but not with ankyrinG) are involved in the initial formation of neurites. In the membranous protrusions surrounding the soma before neuritogenesis, filamentous actin (F-actin) and ankyrinB continuously move toward the soma (retrograde flow). Bead-tracking experiments show that ankyrinB mediates L1-CAM coupling with retrograde F-actin flow in these perisomatic structures. Ligation of the L1-CAM ectodomain by an immobile substrate induces L1CD-ankyrinB binding and the formation of stationary ankyrinB clusters. Neurite initiation preferentially occurs at the site of these clusters. In contrast, ankyrinB is involved neither in L1-CAM coupling with F-actin flow in growth cones nor in L1-based neurite elongation. Our results indicate that ankyrinB promotes neurite initiation by acting as a component of the clutch module that transmits traction force generated by F-actin flow to the extracellular substrate via L1-CAM.  相似文献   

7.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

8.
Growth cone behavior and production of traction force   总被引:11,自引:9,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1949-1957
The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of these obstacles occurred via three, different, stereotyped growth cone behaviors: (a) filopodial contractions, (b) smooth rearward movement on the dorsal surface of the growth cone, and (c) interactions with ruffling lamellipodia. More than 70% of the obstacle movements were caused by filopodial contractions in which the obstacle attached at the extreme distal end of a filopodium and moved only as the filopodium changed its extension. Filopodial contractions were characterized by frequent changes of obstacle velocity and direction. Contraction of a single filopodium is estimated to exert 50-90 microdyn of force, which can account for the pull exerted by chick sensory growth cones. Importantly, all five cases of growth cones growing over the top of obstacle neurites (i.e., geometry that mimics the usual growth cone/substrate interaction), were of the filopodial contraction type. Some 25% of obstacle movements occurred by a smooth backward movement along the top surface of growth cones. Both the appearance and rate of movements were similar to that reported for retrograde flow of cortical actin near the dorsal growth cone surface. Although these retrograde flow movements also exerted enough force to account for growth cone pulling, we did not observe such movements on ventral growth cone surfaces. Occasionally obstacles were moved by interaction with ruffling lamellipodia. However, we obtained no evidence for attachment of the obstacles to ruffling lamellipodia or for directed obstacle movements by this mechanism. These data suggest that chick sensory growth cones move forward by contractile activity of filopodia, i.e., isometric contraction on a rigid substrate. Our data argue against retrograde flow of actin producing traction force.  相似文献   

9.
Retinal axon pathfinding from the retina into the optic nerve involves the growth promoting axon guidance molecules L1, laminin and netrin 1, each of which governs axon behavior at specific regions along the retinal pathway. In identifying additional molecules regulating this process during embryonic mouse development, we found that transmembrane Semaphorin5A mRNA and protein was specifically expressed in neuroepithelial cells surrounding retinal axons at the optic disc and along the optic nerve. Given that growth cone responses to a specific guidance molecule can be altered by co-exposure to a second guidance cue, we examined whether retinal axon responses to Sema5A were modulated by other guidance signals axons encountered along the retinal pathway. In growth cone collapse, substratum choice and neurite outgrowth assays, Sema5A triggered an invariant inhibitory response in the context of L1, laminin, or netrin 1 signaling, suggesting that Sema5A inhibited retinal axons throughout their course at the optic disc and nerve. Antibody-perturbation studies in living embryo preparations showed that blocking of Sema5A function led to retinal axons straying out of the optic nerve bundle, indicating that Sema5A normally helped ensheath the retinal pathway. Thus, development of some CNS nerves requires inhibitory sheaths to maintain integrity. Furthermore, this function is accomplished using molecules such as Sema5A that exhibit conserved inhibitory responses in the presence of co-impinging signals from multiple families of guidance molecules.  相似文献   

10.
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

  相似文献   


11.
The Src tyrosine kinases have been implicated in several aspects of neural development and nervous system function; however, their relevant substrates in brain and their mechanism of action in neurons remain to be established clearly. Here we identify the potent Rho regulatory protein, p190 RhoGAP (GTPase-activating protein), as the principal Src substrate detected in the developing and mature nervous system. We also find that mice lacking functional p190 RhoGAP exhibit defects in axon guidance and fasciculation. p190 RhoGAP is co-enriched with F-actin in the distal tips of axons, and overexpressing p190 RhoGAP in neuroblastoma cells promotes extensive neurite outgrowth, indicating that p190 RhoGAP may be an important regulator of Rho-mediated actin reorganization in neuronal growth cones. p190 RhoGAP transduces signals downstream of cell-surface adhesion molecules, and we find that p190-RhoGAP-mediated neurite outgrowth is promoted by the extracellular matrix protein laminin. Together with the fact that mice lacking neural adhesion molecules or Src kinases also exhibit defects in axon outgrowth, guidance and fasciculation, our results suggest that p190 RhoGAP mediates a Src-dependent adhesion signal for neuritogenesis to the actin cytoskeleton through the Rho GTPase.  相似文献   

12.
The growth cone, a terminal structure on developing and regenerating axons, is specialized for motility and guidance functions. In vivo the growth cone responds to environmental cues to guide the axon to its appropriate target. These cues are thought to be responsible for position-specific morphological changes in the growth cone, but the molecules that control growth cone behavior are poorly characterized. We used scanning electron microscopy to analyze the morphology of retinal ganglion cell growth cones in vitro on different adhesion molecules that axons normally encounter in vivo. L1/8D9, N-cadherin, and laminin each induced distinctive morphological characteristics in growth cones. Growth cones elaborated lamellipodial structures in response to the cell adhesion molecules L1/8D9 and N-cadherin, whereas laminin supported filopodial growth cones with small veils. On L1/8D9, the growth cones were larger and produced more filopodia. Filopodial associations between adjacent growth cones and neurites were frequent on L1/8D9 but were uncommon on laminin or N-cadherin. These results demonstrate that different adhesion molecules have profoundly different effects on growth cone morphology. This is consistent with previous reports suggesting that changes in growth cone morphology in vivo occur in response to changes in substrate composition.  相似文献   

13.
The initial stages of nerve outgrowth carried out by growth cones occur in three fundamental cyclic steps. Each of these steps appears to require myosin II activity to variable degrees. The steps include the following: (a) exploration, involving extensions and retractions that are driven and controlled by the interaction of actin retrograde flow and polymerization; (b) adhesion of new extensions to the substrate, which has been shown to be mediated by complex interactions between extracellular matrix proteins, cell adhesion proteins, and the actin cytoskeleton; and (c) traction force generated during forward advance of the growth cone, resulting in the production of tension on the neurite.  相似文献   

14.
A growth cone is a motile structure at the tips of axons that is driven by the actin network and guides axon extension. Low actin adhesion to the substrate creates a stationary actin treadmill that allows leading-edge protrusion when adhesion increases in response to guidance cues. We use experimental measurements in the Aplysia bag growth cone to develop and constrain a simple mechanical model of the actin treadmill. We show that actin retrograde flow is primarily generated by myosin contractile forces, but when myosin is inhibited, leading-edge membrane tension increases and drives the flow. By comparing predictions of the model with previous experimental measurements, we demonstrate that lamellipodial and filopodial filament breaking contribute equally to the resistance to the flow. The fully constrained model clarifies the role of actin turnover in the mechanical balance driving the actin treadmill and reproduces the recent experimental observation that inhibition of actin depolymerization causes retrograde flow to slow exponentially with time. We estimate forces in the actin treadmill, and we demonstrate that measured G-actin distributions are consistent with the existence of a forward-directed fluid flow that transports G-actin to the leading edge.  相似文献   

15.
We seek to understand how the nerve growth cone acts as a sensory motile machine to respond to chemical cues in the developing embryo. This review focuses on filopodial protrusion and F-actin-based motility because there is good evidence that these processes are required for axon guidance. The clutch hypothesis, which states that filopodial protrusion occurs by actin assembly when an actin filament is fixed with respect to the substrate (i.e., a clutch is engaged), was postulated by Mitchison and Kirscher to link protrusion to actin dynamics. Protrusion would require functional modules for movement of material into filopodia, clutching the F-actin, F-actin assembly at the tip, and retrograde flow. In this review, recent studies of actin-associated proteins involved in filopodial protrusion will be summarized, and their roles will be assessed in the context of the clutch hypothesis. The large number of proteins involved in filopodial motility and their complex interactions make it difficult to understand how these proteins act in protrusion. Recently, we have used microscale chromophore-assisted laser inactivation (micro-CALI) for the focal and acute inactivation of specific actin-associated proteins during filopodial protrusion to address their in situ roles. Our findings suggest that myosin V functions in moving membranes or other material forward in extending filopodia, that talin acts in the clutch module, and that zyxin acts in actin assembly at the tip during filopodial protrusion, perhaps by recruiting Ena/VASP family members to promote actin elongation at this site.  相似文献   

16.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

17.
Retrograde actin flow works in concert with cell adhesion to generate traction forces that are involved in axon guidance in neuronal growth cones. Myosins have been implicated in retrograde flow, but identification of the specific myosin subtype(s) involved has been controversial. Using fluorescent speckle microscopy (FSM) to assess actin dynamics, we report that inhibition of myosin II alone decreases retrograde flow by 51% and the remaining flow can be almost fully accounted for by the 'push' of plus-end actin assembly at the leading edge of the growth cone. Interestingly, actin bundles that are associated with filopodium roots elongated by approximately 83% after inhibition of myosin II. This unexpected result was due to decreased rates of actin-bundle severing near their proximal (minus or pointed) ends which are located in the transition zone of the growth cone. Our study reveals a mechanism for the regulation of actin-bundle length by myosin II that is dependent on actin-bundle severing, and demonstrate that retrograde flow is a steady state that depends on both myosin II contractility and actin-network treadmilling.  相似文献   

18.
The role of cell adhesion molecules in neurite outgrowth on Müller cells   总被引:3,自引:0,他引:3  
The roles of neural cell adhesion molecule (NCAM), L1, N-cadherin, and integrin in neurite outgrowth on various substrates were studied. Antibodies against these cell surface molecules were added to explants of chick retina and the neurites from retinal ganglion cells were examined for effects of the antibodies on neurite length and fasciculation. On laminin, an anti-integrin antibody completely inhibited neurite outgrowth. The same antibody did not inhibit neurite outgrowth on polylysine or Müller cells. Antibodies to NCAM, L1, and N-cadherin did not significantly inhibit neurite outgrowth on laminin but produced significant inhibition on Müller cells. The inhibition of neurite outgrowth on glia by anti-L1 antibodies supports the hypothesis that L1 is capable of acting in a heterophilic binding mechanism. On laminin, both anti-N-cadherin and anti-L1 caused defasciculation of neurites from retinal ganglion cells, while anti-NCAM did not. None of these antibodies produced defasciculation on Müller cells. The results indicate that these three cell adhesion molecules may be very important in interactions with glia as axons grow from the retina to the tectum and may be less important in axon-axon interactions along this pathway. No evidence was found supporting the role of integrins in axon growth on Müller cells.  相似文献   

19.
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)‐induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi‐derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF‐induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 757–777, 2015  相似文献   

20.
Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号