首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation.  相似文献   

2.
3.
4.
5.
Recent studies have demonstrated the importance of E-cadherin, a homophilic cell–cell adhesion molecule, in contact inhibition of growth of normal epithelial cells. Many tumor cells also maintain strong intercellular adhesion, and are growth-inhibited by cell– cell contact, especially when grown in three-dimensional culture. To determine if E-cadherin could mediate contact-dependent growth inhibition of nonadherent EMT/6 mouse mammary carcinoma cells that lack E-cadherin, we transfected these cells with an exogenous E-cadherin expression vector. E-cadherin expression in EMT/6 cells resulted in tighter adhesion of multicellular spheroids and a reduced proliferative fraction in three-dimensional culture. In addition to increased cell–cell adhesion, E-cadherin expression also resulted in dephosphorylation of the retinoblastoma protein, an increase in the level of the cyclin-dependent kinase inhibitor p27kip1 and a late reduction in cyclin D1 protein. Tightly adherent spheroids also showed increased levels of p27 bound to the cyclin E-cdk2 complex, and a reduction in cyclin E-cdk2 activity. Exposure to E-cadherin–neutralizing antibodies in three-dimensional culture simultaneously prevented adhesion and stimulated proliferation of E-cadherin transfectants as well as a panel of human colon, breast, and lung carcinoma cell lines that express functional E-cadherin. To test the importance of p27 in E-cadherin–dependent growth inhibition, we engineered E-cadherin–positive cells to express inducible p27. By forcing expression of p27 levels similar to those observed in aggregated cells, the stimulatory effect of E-cadherin–neutralizing antibodies on proliferation could be inhibited. This study demonstrates that E-cadherin, classically described as an invasion suppressor, is also a major growth suppressor, and its ability to inhibit proliferation involves upregulation of the cyclin-dependent kinase inhibitor p27.  相似文献   

6.
7.
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.  相似文献   

8.
The phenotypic transformation of well-differentiated epithelial carcinoma into a mesenchymal-like state provides cancer cells with the ability to disseminate locally and to metastasise. Different degrees of epithelial–mesenchymal transition (EMT) have been found to occur in carcinomas from breast, colon and ovarian carcinoma (OC), among others. Numerous studies have focused on bona fide epithelial and mesenchymal states but rarely on intermediate states. In this study, we describe a model system for appraising the spectrum of EMT using 43 well-characterised OC cell lines. Phenotypic EMT characterisation reveals four subgroups: Epithelial, Intermediate E, Intermediate M and Mesenchymal, which represent different epithelial–mesenchymal compositions along the EMT spectrum. In cell-based EMT-related functional studies, OC cells harbouring an Intermediate M phenotype are characterised by high N-cadherin and ZEB1 expression and low E-cadherin and ERBB3/HER3 expression and are more anoikis-resistant and spheroidogenic. A specific Src-kinase inhibitor, Saracatinib (AZD0530), restores E-cadherin expression in Intermediate M cells in in vitro and in vivo models and abrogates spheroidogenesis. We show how a 33-gene EMT Signature can sub-classify an OC cohort into four EMT States correlating with progression-free survival (PFS). We conclude that the characterisation of intermediate EMT states provides a new approach to better define EMT. The concept of the EMT Spectrum allows the utilisation of EMT genes as predictive markers and the design and application of therapeutic targets for reversing EMT in a selective subgroup of patients.  相似文献   

9.
10.
11.
A mutation within one allele of the p53 tumor suppressor gene can inactivate the remaining wild-type allele in a dominant-negative manner and in some cases can exert an additional oncogenic activity, known as mutant p53 ‘gain of function'' (GOF). To study the role of p53 mutations in prostate cancer and to discriminate between the dominant-negative effect and the GOF activity of mutant p53, we measured, using microarrays, the expression profiles of three immortalized prostate epithelial cultures expressing wild-type, inactivated p53 or mutated p53. Analysis of these gene expression profiles showed that both inactivated p53 and p53R175H mutant expression resulted in the upregulation of cell cycle progression genes. A second group, which was upregulated exclusively by mutant p53R175H, was predominantly enriched in developmental genes. This group of genes included the Twist1, a regulator of metastasis and epithelial–mesenchymal transition (EMT). Twist1 levels were also elevated in metastatic prostate cancer-derived cell line DU145, in immortalized lung fibroblasts and in a subset of lung cancer samples, all in a mutant p53-dependent manner. p53R175H mutant bearing immortalized epithelial cells showed typical features of EMT, such as higher expression of mesenchymal markers, lower expression of epithelial markers and enhanced invasive properties in vitro. The mechanism by which p53R175H mutant induces Twist1 expression involves alleviation of the epigenetic repression. Our data suggest that Twist1 expression might be upregulated following p53 mutation in cancer cells.  相似文献   

12.
Helicobacter pylori, a Gram-negative, microaerophilic bacterium found in the stomach, is assumed to be associated with carcinogenesis, invasion and metastasis in digestive diseases. Cytotoxin-associated gene A (CagA) is an oncogenic protein of H. pylori that is encoded by a Cag pathogenicity island related to the development of gastric cancer. The epithelial–mesenchymal transition (EMT) is the main biological event in invasion or metastasis of epithelial cells. H. pylori may promote EMT in human gastric cancer cell lines, but the specific mechanisms are still obscure. We explored the underlying molecular mechanism of EMT induced by H. pylori CagA in gastric cancer. In our article, we detected gastric cancer specimens and adjacent non-cancerous specimens by immunohistochemistry and found increased expression of the EMT-related regulatory protein TWIST1 and the mesenchymal marker vimentin in cancer tissues, while programmed cell death factor 4 (PDCD4) and the epithelial marker E-cadherin expression decreased in cancer specimens. These changes were associated with degree of tissue malignancy. In addition, PDCD4 and TWIST1 levels were related. In gastric cancer cells cocultured with CagA expression plasmid, CagA activated TWIST1 and vimentin expression, and inhibited E-cadherin expression by downregulating PDCD4. CagA also promoted mobility of gastric cancer cells by regulating PDCD4. Thus, H. pylori CagA induced EMT in gastric cancer cells, which reveals a new signaling pathway of EMT in gastric cancer cell lines.  相似文献   

13.
We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.  相似文献   

14.
Epithelial-mesenchymal transition (EMT) is a morphogenetic process that endows epithelial cells with migratory and invasive potential. Mechanical and chemical signals from the tumor microenvironment can activate the EMT program, thereby permitting cancer cells to invade the surrounding stroma and disseminate to distant organs. Transforming growth factor β1 (TGFβ1) is a potent inducer of EMT that can also induce apoptosis depending on the microenvironmental context. In particular, stiff microenvironments promote EMT while softer ones promote apoptosis. Here, we investigated the molecular signaling downstream of matrix stiffness that regulates the phenotypic switch in response to TGFβ1 and uncovered a critical role for integrin-linked kinase (ILK). Specifically, depleting ILK from mammary epithelial cells precludes their ability to sense the stiffness of their microenvironment. In response to treatment with TGFβ1, ILK-depleted cells undergo apoptosis on both soft and stiff substrata. We found that knockdown of ILK decreases focal adhesions and increases cell–cell adhesions, thus shifting the balance from cell–matrix to cell–cell adhesion. High cell–matrix adhesion promotes EMT whereas high cell–cell adhesion promotes apoptosis downstream of TGFβ1. These results highlight an important role for ILK in controlling cell phenotype by regulating adhesive connections to the local microenvironment.  相似文献   

15.
Epithelial–mesenchymal transition (EMT) is an essential morphogenetic process during embryonic development. It can be induced in vitro by hepatocyte growth factor/scatter factor (HGF/SF), or by FGF-1 in our NBT-II cell model for EMT. We tested for a central role in EMT of a zinc-finger protein called Slug. Slug mRNA and protein levels were increased transiently in FGF-1–treated NBT-II cells. Transient or stable transfection of Slug cDNA in NBT-II cells resulted in a striking disappearance of the desmosomal markers desmoplakin and desmoglein from cell–cell contact areas, mimicking the initial steps of FGF-1 or HGF/SF- induced EMT. Stable transfectant cells expressed Slug protein and were less epithelial, with increased cell spreading and cell–cell separation in subconfluent cultures. Interestingly, NBT-II cells transfected with antisense Slug cDNA were able to resist EMT induction by FGF-1 or even HGF/SF. This antisense effect was suppressed by retransfection with Slug sense cDNA. Our results indicate that Slug induces the first phase of growth factor–induced EMT, including desmosome dissociation, cell spreading, and initiation of cell separation. Moreover, the antisense inhibition experiments suggest that Slug is also necessary for EMT.  相似文献   

16.
Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.  相似文献   

17.
18.
19.

Background

mTOR, which can form mTOR Complex 1 (mTORC1) or mTOR Complex 2 (mTORC2) depending on its binding partners, is frequently deregulated in the pulmonary neoplastic conditions and interstitial lung diseases of the patients treated with rapalogs. In this study, we investigated the relationship between mTOR signaling and epithelial mesenchymal transition (EMT) by dissecting mTOR pathways.

Methods

Components of mTOR signaling pathway were silenced by shRNA in a panel of non-small cell lung cancer cell lines and protein expression of epithelial and mesenchymal markers were evaluated by immunoblotting and immunocytochemistry. mRNA level of the E-cadherin repressor complexes were evaluated by qRT-PCR.

Results

IGF-1 treatment decreased expression of the E-cadherin and rapamycin increased its expression, suggesting hyperactivation of mTOR signaling relates to the loss of E-cadherin. Genetic ablation of rapamycin-insensitive companion of mTOR (Rictor), a component of mTORC2, did not influence E-cadherin expression, whereas genetic ablation of regulatory-associated protein of mTOR (Raptor), a component of mTORC1, led to a decrease in E-cadherin expression at the mRNA level. Increased phosphorylation of AKT at Ser473 and GSK-3β at Ser9 were observed in the Raptor-silenced NSCLC cells. Of the E-cadherin repressor complexes tested, Snail, Zeb2, and Twist1 mRNAs were elevated in raptor-silenced A549 cells, and Zeb2 and Twist1 mRNAs were elevated in Raptor-silenced H2009 cells. These findings were recapitulated by treatment with the GSK-3β inhibitor, LiCl. Raptor knockdown A549 cells showed increased expression of N-cadherin and vimentin with mesenchymal phenotypic changes.

Conclusions

In conclusion, selective inhibition of mTORC1 leads to hyperactivation of the AKT/GSK-3β pathway, inducing E-cadherin repressor complexes and EMT. These findings imply the existence of a feedback inhibition loop of mTORC1 onto mTORC2 that plays a role in the homeostasis of E-cadherin expression and EMT, requiring caution in the clinical use of rapalog and selective mTORC1 inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号