首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Human dental follicle cells (DFCs) derived from wisdom teeth are precursor cells for cementoblasts. In this study, we recognized that naïve DFCs express constitutively the early neural cell marker β-III-tubulin. Interestingly, DFCs formed β-III-tubulin-positive neurosphere-like cell clusters (NLCCs) on low-attachment cell culture dishes in serum-replacement medium (SRM). For a detailed examination of the neural differentiation potential, DFCs were cultivated in different compositions of SRM containing supplements such as N2, B27, G5 and the neural stem cell supplement. Moreover, these cell culture media were combined with different cell culture substrates such as gelatin, laminin, poly-l-ornithine or poly-l-lysine. After cultivation in SRM, DFCs differentiated into cells with small cell bodies and long cellular extrusions. The expression of nestin, β-III-tubulin, neuron-specific enolase (NSE) and neurofilament was up-regulated in SRM supplemented with G5, a cell culture supplement for glial cells, and the neural stem cell supplement. DFCs formed NLCCs and demonstrated an increased gene expression of neural cell markers β-III-tubulin, NSE, nestin and for small neuron markers such as neuropeptides galanin (GAL) and tachykinin (TAC1) after cultivation on poly-l-lysine. For a further neural differentiation NLCC-derived cells were sub-cultivated on laminin and poly-l-ornithine cell culture substrate. After 2 weeks of differentiation, DFCs exposed neural-like cell morphology with small neurite-like cell extrusions. These cells differentially express neurofilament and NSE, but only low levels of β-III-tubulin and nestin. In conclusion, we demonstrated the differentiation of human DFCs into neuron-like cells after a two-step strategy for neuronal differentiation.  相似文献   

4.
5.
In this paper, we describe a method for primary culture of a well differentiated electrically tight rabbit vocal fold epithelial cell multilayer and the measurement of transepithelial electrical resistance (TEER) for the evaluation of epithelial barrier function in vitro. Rabbit larynges were harvested and enzymatically treated to isolate vocal fold epithelial cells and to establish primary culture. Vocal fold epithelial cells were co-cultured with mitomycin C-treated feeder cells on collagen-coated plates. After 10–14 days in primary culture, cells were passaged and cultured until they achieved 70–90% confluence on collagen-coated plates. Epithelial cells were then passaged onto collagen-coated cell culture inserts using 4.5 cm2 membrane filters (1.0 μm pore size) with 10% fetal bovine serum or 30 μg/mL bovine pituitary extract to investigate the effects of growth-promoting additives on TEER. Additional experiments were performed to investigate optimal seeding density (1.1, 2.2, 4.4, or 8.9 × 105 cells/cm2), the effect of co-culture with feeder cells, and the effect of passage number on epithelial barrier function. Characterization of in vitro cultures was performed using hematoxylin and eosin staining and immunostaining for vocal fold epithelial cell markers and tight junctions. Results revealed higher TEER in cells supplemented with fetal bovine serum compared to bovine pituitary extract. TEER was highest in cells passaged at a seeding density of 2.2 × 104 cells/cm2, and TEER was higher in cells at passage two than passage three. Ultrastructural experiments revealed a well-differentiated epithelial cell multilayer, expressing the epithelial cell markers CK13, CK14 and the tight junction proteins occludin and ZO-1.  相似文献   

6.
Lack of differentiated functions of the tissue of origin in tissue culture thought to be due to dedifferentiation was shown to be due to selective overgrowth of fibroblasts. Enrichment culture techniques, (alternate animal and culture passage), designed to give the functionally differentiated cells selective advantage over the fibroblasts resulted in a large number of functionally differentiated clonal strains. Thus the dogma of dedifferentiation was destroyed. It is proposed to substitute the dedifferentiation hypothesis with the hypothesis that cells in culture accurately represent cells in vivo without the complex in vivo environment. With the development of hormonally defined media, combined with functionally differentiated clonal cell lines, the potential of tissue culture studies is greatly augmented. Hormonal responses and dependencies can be discovered in culture and the discovery of dependencies of cancer cells has led to a new rationale for therapy.  相似文献   

7.
Freshly isolated mouse prostate epithelial cells regenerate fully differentiated prostate tissue when combined with embryonic urogenital sinus mesenchyme and grafted in vivo. We show here that this regenerative capacity, which has been attributed to a small population of pleuripotential progenitor epithelial cells, is rapidly lost when the cells are placed in monolayer culture but can be maintained by culture in anchorage-independent conditions. Epithelial cells placed in anchorage-independent culture formed proliferating spheres that could be serially passaged and exhibited increased expression of putative stem cell markers as compared to cells grown in monolayer culture. Epithelial cells isolated from the fetal urogenital sinus, the newborn, and adult prostate formed spheres with similar efficiency, while cells isolated from the post-castration prostate exhibited significantly higher sphere-forming abilities. When passaged spheres were recombined with E17 rat urogenital sinus mesenchyme and grafted in vivo, they generated fully differentiated mouse prostate glandular epithelium containing both p63+ basal cells and p63− luminal cells and expressing a variety of prostate-specific and terminal differentiation markers.  相似文献   

8.
Cultivation of human tenocytes in high-density culture   总被引:4,自引:1,他引:3  
Limited supplies of tendon tissue for use in reconstructive surgery require development of phenotypically stable tenocytes cultivated in vitro. Tenocytes in monolayer culture display an unstable phenotype and tend to dedifferentiate, but those in three-dimensional culture may remain phenotypically and functionally differentiated. In this study we established a three-dimensional high-density culture system for cultivation of human tenocytes for tissue engineering. Human tenocytes were expanded in monolayer culture before transfer to high-density culture. The synthesis of major extracellular matrix proteins and the ultrastructural morphology of the three-dimensional cultures were investigated for up to 2 weeks by electron microscopy, immunohistochemistry, immunoblotting and quantitative, real-time PCR. Differentiated tenocytes were able to survive over a period of 14 days in high-density culture. During the culture period tenocytes exhibited a typical tenocyte morphology embedded in an extensive extracellular matrix containing cross-striated collagen type I fibrils and proteoglycans. Moreover, expression of the tendon-specific marker scleraxis underlined the tenocytic identity of these cells. Taken together, we conclude that the three-dimensional high-density cultures may be useful as a new approach for obtaining differentiated tenocytes for autologous tenocyte transplantation to support tendon and ligament healing and to investigate the effect of tendon-affecting agents on tendon in vitro.  相似文献   

9.
Optimization of culture conditions for human corneal endothelial cells   总被引:5,自引:0,他引:5  
Summary Long-term cultivation of human corneal endothelial cells (HCEC) was optimized with respect to different components of the culture system: 25 different nutrient media, different sera, 6 mitogens and various substrates were tested in their ability to influence clonal growth and morphology of HCEC. F99, a 1∶1 mixture of the two media M199 and Ham’s F12, was the most effective basal medium in promoting clonal growth of HCEC. Among various sera, human serum and fetal bovine serum showed optimal growth promoting activities in combination with F99, whereas newborn bovine serum (NBS) was by far superior for the development of a typically corneal endothelial morphology. Crude fibroblast growth factor (FGF), or alternatively endothelial cell growth supplement, was absolutely essential for clonal growth of HCEC at low serum concentrations, for example 5% NBS. Formation of a monolayer with a morphology similar to corneal endothelium in vivo was observed only on culture dishes coated with basal membrane components such as collagen type IV, laminin, or fibronectin. The most pronounced effect on morphologic appearance was obtained by culturing the cells on the extracellular matrix (ECM) produced by bovine corneal endothelial cells. Moreover, ECM could substitute for crude FGF in clonal growth assays.  相似文献   

10.
Summary Isolation and maintenance of porcine embryonic stem (pES) cells have been hindered by the inability to inhibit differentiation of the porcine inner cell mass (pICM) in vitro. Culture conditions currently in use have been developed from mouse ES cell culture and are not effective for maintaining the pICM. Optimizing culture conditions for the pICM is essential. We have developed a grading system to detect changes in the differentiation status of in vitro cultured pICM. Porcine ICMs (Day 7) were isolated by immunosurgery and cultured for 4 d in either Dulbecco’s modified Eagle’s medium (DMEM)-based medium (D medium) or DMEM/Ham’s F-10 (1:1)-based medium (D/H medium) with or without human Leukemia Inhibitory Factor (hLIF, 1000 iu/ml). Colonies were photographed daily for morphological analysis. pICMs were categorized into one of two types based on their morphological profile: type A, nonepithelial or type B, epithelial-like. Eight investigators evaluated pICM differentiation using standardized differentiation profiles. Each pICM series was graded on a scale of 1 (fully undifferentiated) to 5 (fully differentiated) for each time point. Differentiation was verified by alkaline phosphatase activity, cytokeratin staining, and scanning electron microscopy. Neither hLIF nor culture medium delayed differentiation of pICMs (P=0.08 and P=0.25, respectively). The grading system employed was an effective tool for detecting treatment effects on differentiation of the developing pICM. These results demonstrate that hLIF cannot significantly inhibit differentiation of the pICM, and is unlikely to assist in porcine ES cell isolation. Future experiments utilizing homologous cytokines may prove more beneficial.  相似文献   

11.
12.
Eder  Susanne  Müller  Karin  Chen  Shuai  Schoen  Jennifer 《Cytotechnology》2022,74(5):531-538

Basic knowledge about cellular and molecular mechanisms underlying feline reproduction is required to improve reproductive biotechnologies in endangered felids. Commonly, the domestic cat (Felis catus) is used as a model species, but many of the fine-tuned, dynamic reproductive processes can hardly be observed in vivo. This necessitates the development of in vitro models. The oviduct is a central reproductive organ hosting fertilization in the ampulla and early embryonic development in the isthmus part, which also functions as a sperm reservoir before fertilization. In other species, culturing oviduct epithelial cells in compartmentalized culture systems has proven useful to maintain oviduct epithelium polarization and functionality. Therefore, we made the first attempt to establish a compartmentalized long-term culture system of feline oviduct epithelial cells from both ampulla and isthmus. Cells were isolated from tissue samples (n?=?33 animals) after routine gonadectomy, seeded on permeable filter supports and cultured at the liquid–liquid or air–liquid interface. Cultures were harvested after 21 days and microscopically evaluated for epithelial differentiation (monolayer formation with basal–apical polarization) and protein expression of marker genes (oviduct-specific glycoprotein, acetylated tubulin). Due to the heterogeneous and undefined native tissue material available for this study, the applied cell culture approach was only successful in a limited number of cases (five differentiated cultures). Even though the protocol needs optimization, our study showed that the compartmentalized culture approach is suitable for maintaining differentiated epithelial cells from both isthmus and ampulla of the feline oviduct.

  相似文献   

13.
AIM:To investigate the interaction between mesenchymal stem cells(MSCs) and bone grafts using two different cultivation methods:static and dynamic.METHODS:MSCs were isolated from rat bone marrow.MSC culture was analyzed according to the morphology,cell differentiation potential,and surface molecular markers.Before cell culture,freeze-dried bone(FDB) was maintained in culture for 3 d in order to verify culture medium pH.MSCs were co-cultured with FDB using two different cultivation methods:static co-culture(two-dimensional) and dynamic co-culture(threedimensional).After 24 h of cultivation by dynamic or static methods,histological analysis of Cell adhesion on FDB was performed.Cell viability was assessed by the Trypan Blue exclusion method on days 0,3 and 6 after dynamic or static culture.Adherent cells were detached from FDB surface,stained with Trypan Blue,and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture.Statistical analyses were performed with SPSS and a P < 0.05 was considered significant.RESULTS:The results showed a clear potential for adipogenic and osteogenic differentiation of MSC cultures.Rat MSCs were positive for CD44,CD90 and CD29 and negative for CD34,CD45 and CD11bc.FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH(P > 0.05).In histological analysis,there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods(P < 0.05).The MSCs in the dynamic co-culture method demonstrated greater adhesion on the bone surface than in static co-culture method.On day 0,the cell viability in the dynamic system was significantly higher than in the static system(P < 0.05).There was a statistical difference in cell viability between days 0,3 and 6 after dynamic culture(P < 0.05).In static culture,cell viability on day 6 was significantly lower than on day 3 and 0(P < 0.05).CONCLUSION:An alternative cultivation method was developed to improve the MSCs adhesion on FDB,demonstrating that dynamic co-culture provides a superior environment over static conditions.  相似文献   

14.
Current experimental models of esophageal epithelium in vitro suffer from either poor differentiation or complicated culture systems. We have established a model to study stratified squamous epithelium in vitro, which is very similar to esophageal epithelium in vivo. A stratified squamous multilayer epithelium was formed by seeding primary normal human bronchial epithelial (NHBE) cells onto collagen- and fibronectin-coated trans-well inserts and then cultivating the cells under air-liquid interface (ALI) conditions in the presence of growth factors and low levels of all-trans-retinoic acid. Trans-epithelial electrical resistance (TEER) measurements revealed the presence of a tight barrier, previously only achievable with esophageal biopsies mounted in Ussing chambers. Molecular markers for desmosomes, cornified envelope, tight junctions, and mature esophageal epithelium were upregulated in the differentiating culture in parallel with functional properties, such as decreased permeability and acid resistance and restoration. Acid exposure resulted in a decrease in TEER, but following 1-h recovery the TEER values were fully restored. Treatment with all-trans-retinoic acid decreased TEER and inhibited the recovery after acid challenge. PPAR-delta agonist treatment increased TEER, and this temporary increase in TEER was consistent with an increase in involucrin mRNA. Global gene expression analysis showed that ALI-differentiated NHBE cells had expression profiles more similar to epithelial biopsies from the esophageal tissue of healthy volunteers than to any other cell line. With respect to morphology, molecular markers, barrier properties, and acid resistance, this model presents a new way to investigate barrier properties and the possible effects of different agents on human esophagus-like epithelium.  相似文献   

15.
An in vitro system of isolated skin cells has been developed in order to address the understanding on the factors that control the shedding cycle and differentiation of lizard epidermis. The skin from the regenerating lizard tail has been separated in epidermis and dermis, cells have been dissociated, cultivated in vitro, and studied ultrastructurally after 1–30 days of culture condition. Dissociated keratinocytes after 12 days in culture show numerous cell elongations and contain bundles of keratin or sparse keratin filaments. These cells often contain one to three 0.5–3 μm large and dense “keratinaceous bodies”, an organelle representing tonofilament disassembling. Most keratinocytes have sparse tonofilaments in the cytoplasm and form shorter bundles of keratin in the cell periphery. The dissociated dermis mainly consists of mesenchymal cells containing sparse bundles of intermediate filaments. These cells proliferate and form multi-stratified layers and a dermal pellicle in about 2–3 weeks in vitro in our basic medium. Conversely, cultures of keratinocytes do not expand but eventually reduce to few viable cells within 2–3 weeks of in vitro condition. It is suggested that dermal cells sustain themselves through the production of growth factors but that epidermal cells requires specific growth factors still to be identified before setting-up an in vitro system that allows analyzing the control of the shedding cycle in lizards.  相似文献   

16.
Summary We have developed a culture system for early bovine embryos in serum-free media conditioned by oviduct cell monolayers. A gentle mechanical procedure for oviduct cell isolation has been applied for this purpose avoiding the use of proteolytic enzymes. The aim of the present study was to identify the cell types present in the monolayers and to examine their fate in primary culture in serum-free or in serum-containing media by means of electronmicroscopical, immunocytochemical, and biochemical analyses. The cell dissociation procedure yielded two cell populations: ciliary cells and secretory cells that gradually dedifferentiate during culture. These cells formed a confluent monolayer after 6 d of culture in Tissue Culture Medium 199 medium supplemented with 10% fetal calf serum. Confluent cells displayed a typical epithelial cell morphology as assessed by phase contrast and electron microscopy and all the cells contained cytokeratin filaments as determined by immunocytochemistry. The overall histoarchitecture of the monolayer was preserved after washing and further culture for 7 d in serum-free medium. However, some degenerative signs indicate that the serum-free culture should not be extended for more than 7 d. Confluent oviduct cells also maintained their metabolic and protein secretory activity when deprived of serum. Total protein content in the culture supernatant linearly increased as a function of time and numerous peaks were detected after separation of proteins by high performance ion exchange chromatography. Protein elution patterns were reproducible and most of the proteins present in the culture medium were neosynthesized as determined by the incorporation of radiolabeled amino acids into nondialyzable proteins.  相似文献   

17.
Differentiation of stem cells is tightly regulated by the microenvironment which is mainly composed of nonparenchymal cells. Herein, we investigated effect of hepatic stellate cells (HSCs) in different states on mesenchymal stem cells (MSCs) differentiation. Rat HSCs were isolated and stayed quiescent within 5 days. Primary HSCs were activated by being in vitro cultured for 7 days or cocultured with Kupffer cells for 5 days. MSCs were cocultured with HSCs of different states. Expression of hepatic lineage markers was analyzed by RT-PCR and immunofluorescence. Glycogen deposition was detected by periodic acid-schiff staining. MSCs cocultured with HSC-T6 or Kupffer cell activated HSCs were morphologically transformed into hepatocyte-like cells. Hepatic-specific marker albumin was expressed in 78.3% of the differentiated MSCs 2 weeks after initiation of coculture. In addition, the differentiated MSCs also expressed alpha-fetoprotein, cytokeratin-18, glutamine synthetase and phosphoenolpyruvate carboxykinase. Glycogen deposition was detectable in 55.4% of the differentiated MSCs 6 weeks after initiation of coculture. However, the quiescent HSCs or culture activated HSCs did not exert the ability to modulate the differentiation of MSCs. Moreover, Kupffer cell activated HSCs rather than culture activated HSCs expressed hepatocyte growth factor mRNA. We draw the conclusion that fully activated HSCs could modulate MSCs differentiation into hepatocyte-like cells.  相似文献   

18.
Attempts to grow mycelium of Coelomomyces punctatus from Anopheles quadrimaculatus larvae were made using more than 50 combinations of known vertebrate and invertebrate tissue culture media and microbiological media. Growth and/or differentiation of mycelium into sporangia were observed in several media. Significant growth of hyphal fragments and differentiation into young resting sporangia occurred in conditioned Mitsuhashi-Maramorosch insect tissue culture medium. This medium was conditioned by growth for 3 weeks in it of Varma's Anopheles stephensi tissue culture cells and was supplemented with 20% heat-inactivated fetal bovine serum and a synthetic tripeptide, glycyl-histidyl-lysine. Limited growth and elongation of lateral hyphal branches and subsequent development into resting sporangia with typical outer wall markings and pigmentation of mature forms were observed in a modified brain-heart infusion medium. Some media stimulated hyphae to develop into smooth-walled, spherical bodies of size and appearance typical of young sporangium initials but with no further maturity. In most media, no growth or development of mycelium occurred, but the fungus remained alive for 2–4 weeks. Mycelium of C. punctatus dissected from Cyclops vernalis did not grow and develop in any of the media utilized. However, in one case the mycelium differentiated into gametes shortly after dissection into modified brain-heart infusion medium.  相似文献   

19.
Summary Due to limited growth potential of primary cultures and the absence of continuous lines of healthy enteric smooth muscle, we have studied the culture behavior of neoplastic gastrointestinal smooth muscle cells. Forty-six human enteric smooth muscle neoplasms (leiomyomas and leiomyosarcomas) were studied while fresh and/or after culture in vitro and growth in vivo in athymic nude mice, with assessments made of morphology, growth characteristics, and biochemical markers of differentiation. The state of differentiation of the tumors varied, with well-differentiated tumors tending to express binding sites for the gastrointestinal hormone cholecystokinin, whereas less well-differentiated tumors did not. Poorly differentiated tumors were the easiest to establish in culture in vitro and to grow in vivo in nude mice. When the cells placed directly into culture proliferated to confluent density, they underwent morphologic differentiation from a spread, fibroblastlike shape to a slender spindle morphology, with these cells possessing fewer biosynthetic organelles and arranging themselves in characteristic “hill and valley” arrays. However, the highly differentiated characteristics of expression of desmin or cholecystokinin-binding sites were not observed in cultured cells. In contrast, cells that had been passaged in nude mice before culture displayed a proliferative phenotype and failed to undergo morphologic differentiation on reaching confluent density. Four human enteric smooth muscle cell lines (documented by chromosomal analysis) originating in stomach, jejunum, ileum, and rectum were established using this strategy. This work was supported by grants DK32878 and DK34988 from the National Institutes of Health, Bethesda, MD.  相似文献   

20.
Optimization of in vitro culture system for the expansion and the maturation of male germ cells to post meiotic stages is a valuable tool for studies exploring spermatogenesis regulation and the management of male infertility. Several studies have reported promising results of mouse spermatogonial stem cells culture in three-dimensional (3D) culture systems and a subsequent production of sperm. In the present study, we investigated the capacity of a three-dimensional soft agar culture system (SACS) supplemented with Knockout Serum Replacement (KSR) in colony formation and inducing human germ cells to reach post-meiotic stages. Testicular cells from testes of brain -dead donors were first cultured for three weeks in proliferation medium. The cells were subsequently cultured in the upper layer of the SACS (3D group) in a medium supplemented with KSR and hormones, and the results were compared with that of a two-dimensional (2D) culture system. We found that the number and diameter of colonies and the levels of expression of Scp3 and Integrin α6 in the 3D culture group were significantly higher than in the 2D group. Our findings indicate that SACS can reconstruct a microenvironment capable of regulating both proliferation and differentiation of cell colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号