首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequences of insertion sequences IS3411L (left) and IS3411R (right), present as direct terminal repeats in the citrate utilization of citrate utilization transposon Tn3411, and of IS3411 (generated by intramolecular recombination between IS3411L and IS3411R) were determined. The three IS3411 elements (IS3411R, IS3411L, and IS3411) were 1,309 base pairs long and identical in DNA sequence. IS3411 had 27-base-pair terminal inverted repeats with three bases mismatched and one long open reading frame (240 amino acids) that was proposed to be a transposase. Three polypeptides of 29,000, 27,000, and about 10,000 molecular weight, determined by IS3411, were identified in minicells. Since Tn3411 generates a 3-base-pair repeat upon integration, the nucleotide sequences of IS3411 were compared with those of IS3.  相似文献   

2.
We have physically characterised a deletion mutant of the R plasmid R100 which has lost all of the antibiotic resistances, including chloramphenicol resistance (Cmr), coded by its IS1-flanked r-determinant. The deletion was mediated by one of the flanking IS1 elements and terminates within the carboxyl terminus of the Cmr gene. DNA sequence analysis showed that the mutated gene would produce a protein 20 amino acids longer than the wild-type due to fusion with an open reading frame in the IS element. Surprisingly for a deletion mutation, rare, spontaneous Cmr revertants could be recovered. Two of the four revertants studied had frame shifts due to the insertion of a single AT base pair at the same position; the revertants would code for a protein five amino acids shorter than the wild-type. The other two revertants had acquired duplications of the 34-bp inverted terminal repeat sequences of the IS1 element and would direct the synthesis of a protein six amino acids longer than the wild-type. The reverted Cmr markers were still capable of transposition. These observations suggest a role for point mutations and small DNA rearrangements in the formation of new gene organisations produced by mobile genetic elements.  相似文献   

3.
C Y Wang  V C Bond    C A Genco 《Journal of bacteriology》1997,179(11):3808-3812
In this study a second endogenous Porphyromonas gingivalis insertion element (IS element) that is capable of transposition within P. gingivalis was identified. Nucleotide sequence analysis of the Tn4351 insertion site in a P. gingivalis Tn4351-generated transconjugant showed that a complete copy of the previously unidentified IS element, designated PGIS2, had inserted into IS4351R in Tn4351. PGIS2 is 1,207 bp in length with 19-bp imperfect terminal inverted repeats, and insertion resulted in a duplicated 10-bp target sequence. Results of Southern hybridization of chromosomal DNA isolated from several P. gingivalis strains with a PGIS2-specific probe demonstrated that the number of copies of PGIS2 per genome varies among different P. gingivalis strains. Computer analysis of the putative polypeptide encoded by PGIS2 revealed strong homologies to the products encoded by IS1358 from Vibrio cholerae, ISAS1 from Aeromonas salmonicida, and H-rpt in Escherichia coli K-12.  相似文献   

4.
The broad-host-range IncP beta plasmid R751 can mobilize itself from Escherichia coli to Bacteroides spp, but it is not maintained in Bacteroides spp. If R751 carries the Bacteroides transposon Tn4351, it can be integrated into the Bacteroides chromosome. Previously we showed that R751, integrated in the chromosome of Bacteroides uniformis, cannot mobilize itself out of B. uniformis into E. coli or isogenic B. uniformis strains. In this report, we showed that if the Bacteroides conjugative tetracycline resistance element Tcr ERL was coresident with the R751 insertion in B. uniformis, derivatives of R751 were transferred to E. coli, where they were recovered as plasmids. The most common derivatives were R751::Tn4351 and R751::IS4351, but some strains transferred R751 derivatives, containing additional DNA segments ranging in size from 10 to 23 kilobases. These DNA inserts cross-hybridized with chromosomal DNA from B. uniformis which did not carry the Tcr ERL element. Therefore, the inserts appeared to be segments of the wild-type B. uniformis chromosome and were not associated with the Tcr ERL element. The transfer of integrated R751 from B. uniformis was independent of the RecA phenotype of the E. coli recipients and did not appear to be due to transfer of B. uniformis chromosomal DNA, followed by RecA-dependent recombination between homologous IS4351 sequences to form the resultant R751 plasmid derivatives. Consistent with this, no transfer of Tn4351 (associated with the cointegrated R751) from B. uniformis donors to isogenic B. uniformis recipients was detected (< 10(-8)). Our data support the hypothesis that R751 excises from the B. uniformis chromosome by recombination involving flanking Tn4351 or IS4351 sequences and forms nonreplicating circles. The mobilization of these circular forms out of B. uniformis to E.coli is then facilitated by the Tcr ERL element.  相似文献   

5.
The self-transmissible plasmid pTR2030 mobilized nonconjugative heterologous cloning vectors pGK12 (Cmr Emr) and pSA3 (Emr) at frequencies of 10(-5) to 10(-6) per input donor. Transconjugants harbored a 51- or 58-kilobase (kb) plasmid not found in the parental strains that cotransferred at high frequency with Cmr Emr and pTR2030-encoded phage resistance (Hsp+) in second-round matings (10(-1) per input donor). Restriction endonuclease mapping and DNA-DNA hybridization identified the 51- to 58-kb plasmids as pTR2030::vector cointegrates. Examination of four cointegrates indicated that pGK12 and pSA3 had inserted within two locations on pTR2030. Resolution of the cointegrates generated vector derivatives containing a 0.8-kb insert of pTR2030 DNA. Restriction analyses of several resolution plasmids indicated that the 0.8-kb element had inserted into various positions within pGK12 and pSA3 and in certain cases had inactivated the Cmr or Emr marker of pGK12. A conjugative mobilization assay demonstrated that the 0.8-kb element, designated IS946, mediated transpositional recombination. Nucleotide sequence determination identified IS946 as an 808-base-pair (bp) insertion sequence sharing ca. 96% homology with lactococcal insertion sequence ISS1. IS946 differed by 27 and 31 bp from ISS1S and ISS1T, respectively, and in 2 of 226 amino acids in the deduced sequence of the putative transposase. IS946 has perfect 18-bp terminal inverted repeats, identical to ISS1, and similarly generated 8-bp direct repeats of the target site upon insertion.  相似文献   

6.
The nucleotide sequence and genetic analyses of one of the directly repeated sequences flanking the macrolide-lincosamide-streptogramin B drug resistance determinant, ermF, from the Bacteroides fragilis R plasmid, pBF4, suggested that this region is an insertion sequence (IS) element. This 1,155-base-pair element contained partially matched (20 of 25 base pairs) terminal-inverted repeats, overlapping, anti-parallel open reading frames, and nine promoterlike sequences, including three that were oriented outward. Analysis of this sequence revealed no significant nucleotide homology to 13 other known IS elements. Inasmuch as Southern blot hybridization analysis detected homologous sequences in chromosomal DNA and its G+C content (42 mol%) was similar to that of B. fragilis, the data suggested that this element is of Bacteroides origin. Transposition promoted by this element was demonstrated in recA E. coli. Recombinants were recovered by selecting for the activation of a promoterless chloramphenicol resistance gene on the plasmid pDH5110 and were characterized by restriction endonuclease mapping and Southern blot hybridization. We propose that this IS element be designated IS4351.  相似文献   

7.
A new insertion sequence (IS), designated IS1086, was isolated from Alcaligenes eutrophus CH34 by being trapped in plasmid pJV240, which contains the Bacillus subtilis sacB and sacR genes. The 1,106-bp IS1086 element contains partially matched (22 of 28 bp) terminal-inverted repeats and a long open reading frame. Hybridization data suggest the presence of one copy of IS1086 in the strain CH34 heavy-metal resistance plasmid pMOL28 and at least two copies in its chromosome. Analysis of the IS1086 nucleotide sequence revealed striking homology with two other IS elements, IS30 and IS4351, suggesting that they are three close members in a family of phylogenetically related insertion sequences. One open reading frame of the Spiroplasma citri phage SpV1-R8A2 B was also found to be related to this IS family but to a lesser extent. Comparison of the G+C contents of IS30 and IS1086 revealed that they conform to their respective hosts (46 versus 50% for IS30 and Escherichia coli and 64.5% for IS1086 and A. eutrophus). The pressure on the AT/GC ratio led to a very different codon usage in these two closely related IS elements. Results suggesting that IS1086 transposition might be activated by some forms of stress are discussed.  相似文献   

8.
9.
M E Byrne  D A Rouch  R A Skurray 《Gene》1989,81(2):361-367
Resistance to the aminoglycosides gentamicin, tobramycin and kanamycin (GmTmKmR) in Australian clinical strains of Staphylococcus aureus is commonly carried on the composite transposon Tn4001. The resistance gene aacA-aphD of Tn4001, which encodes a bifunctional AAC(6')-APH(2") modifying enzyme, is flanked by two 1324-bp inverted repeats, IS256L and IS256R, that are identical in sequence. Analysis of the IS256 sequence revealed structural features characteristic of IS elements including 26-bp imperfect terminal inverted repeats and a single open reading frame with coding capacity for a 45.6 kDa protein. The nucleotide sequence of IS256 described here, together with the sequence of the aacA-aphD gene reported previously [Rouch et al., J. Gen. Microbiol. 133 (1987) 3039-3052], completes the entire sequence of Tn4001, which totals 4566 bp.  相似文献   

10.
During recloning of Nicotiana tabacum L. repetitive sequence R8.3 in Escherichia coli, a modified clone that differed from the original by the insertion of an IS10 sequence was unintentionally produced. The insert was flanked by a 9-bp direct repeat derived from the R8.3 sequence, the 9-bp duplication of acceptor DNA in the site of insertion being a characteristic of IS10 transposition events. A database search using the FASTA program showed IS10 and other prokaryotic IS elements inserted into numerous eukaryotic clones. Unexpectedly, the IS10, which is not a natural component of the E. coli genome, appeared to be by far the most frequent contaminant of DNA databases among several IS sequences tested. In the GenEMBL database, the IS10 query sequence yielded positive scores with more than 500 eukaryotic clones. Insertions of shortened IS10 sequences having only one intact terminal inverted repeat were commonly found. Most full-length IS10 insertions (32 out of 40 analyzed) were flanked by 9-bp direct repeats having the consensus 5'-NPuCNN-NGPyN-3' with a strong preference for 5'-TGCTNA-GNN-3'. One insertion was flanked by an inverted repeat of more than 400 bp in length. PCR amplification and Southern analysis revealed the presence of IS10 sequences in E. coli strains commonly used for DNA cloning, including some reported to be Tn10-free. No IS10-specific PCR product was obtained with N. tabacum or human DNA. Our data suggest that transposition of IS10 elements may accompany cloning steps, particularly into large BAC vectors. This might lead to the relatively frequent contamination of DNA databases by this bacterial sequence. It is estimated that one in approximately every thousand eukaryotic clone in the databases is contaminated by IS-derived sequences. We recommend checking submitted sequences for the presence of IS10 and other IS elements. In addition, DNA databases should be corrected by removing contaminating IS sequences.  相似文献   

11.
Hasebe A  Iida S 《Plasmid》2000,44(1):44-53
Three insertion sequences, IS1417, IS1418, and IS1419, were isolated from Burkholderia glumae (formerly Pseudomonas glumae), a gram-negative rice pathogenic bacterium, on the basis of their abilities to activate the expression of the neo gene of the entrap vector pSHI1063. The 1335-bp IS1417 element with 17-bp imperfect terminal inverted repeats was found to be flanked by 5-bp direct repeats of the vector sequence. IS1418 is 865 bp in length and carries 15-bp inverted repeats with a target duplication of 3 bp. The 1215-bp IS1419 sequence is bounded by the 36-bp terminal inverted repeats of the element and 7-bp direct repeats of the vector sequence. IS1417 and IS1418 belong to the IS2 subgroup of the IS3 family and the IS427 subgroup of the IS5 family, respectively, whereas IS1419 does not appear to be a member of any known IS family. Southern blot analysis of DNAs from B. glumae field isolates indicated that those IS elements are widely distributed, but the host range of the three IS elements appears to be limited to B. glumae and some other related species such as B. plantarii. The polymorphisms exhibited in B. glumae isolates suggest that those elements are useful for molecular epidemiological studies of B. glumae infections.  相似文献   

12.
The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. We have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Emr transconjugants were detected at a frequency of 10(-6) to 10(-5) (R751::Tn4351) or 10(-8) to 10(-6) (R751 and pSS-2). In matings involving pSS-2, all Emr transconjugants contained simple insertions of Tn4351 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Emr transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Emr transconjugants, 13% were auxotrophs. Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the intergrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.  相似文献   

13.
The citrate utilization (Cit+) transposon Tn3411 was shown to be flanked by directly repeated sequences (IS3411L and IS3411R) by restriction enzyme analysis and electron microscope observation. Cit- deletion mutants were frequently found to be generated in pBR322::Tn3411 by intramolecular recombination between the two copies of IS3411. The flanking IS3411 elements of Tn3411 were shown to be functional insertion sequences by Tn3411-mediated direct and inverse transposition. Tn3411-mediated inverse transposition from pBR322::Tn3411 to the F-plasmid derivative pED100 occurred more efficiently than that of direct transposition of the Cit+ determinant. This was thought to be due to the differential transposability of IS3411L and IS3411R in the transposition process. The frequency of transposition of IS3411 marked with a chloramphenicol resistance determinant was much higher than IS3411-mediated cointegrate formation, suggesting that replicon fusions are not essential intermediates in the transposition process of Tn3411 or IS3411. Spontaneous deletions occurred with high frequency in recA hosts. The spontaneous deletion promoted by homologous recombination between two IS3411 elements in Tn3411 was examined with deletion mutants.  相似文献   

14.
G B Smirnov  T S Il'ina 《Genetika》1977,13(4):696-709
The data concerning the biological functions and properties of short specific polynucleotide sequences (so called insertion sequences--IS) are reviewed. IS elements integrated in a genome can lead to strongly polar mutations in Escherichia coli, its bacteriophages and plasmids, while some IS (IS2) being integrated in inverted orientation turn on the gene activity. Several copies of the IS elements are present in the E. coli chromosome. A characteristic feature of IS is their ability to recA-independent migration along the bacterial chromosome. Possible mechanisms of IS integration are discussed. IS elements play the key role in the majority of recA-independent recombinational events: F-prime and partially Hfr-formation, plasmid recombination and dissociation, some cases of deletion formation etc. IS elements participate in recombination in the form of direct or inverted repeats. Direct repeats probably determine the processes of dissociation of the complete multicomponent R-factors and other plasmids. Inverted repeats (some of them are palindromes) are responsible for the migration of several drug-resistance determinants called transposons. Possible mechanisms of IS-dependent and probably IS-controlled recombination are discussed.  相似文献   

15.
Y Cai 《Journal of bacteriology》1991,173(18):5771-5777
IS892, one of the several insertion sequence (IS) elements discovered in Anabaena sp. strain PCC 7120 (Y. Cai and C. P. Wolk, J. Bacteriol. 172:3138-3145, 1990), is 1,675 bp with 24-bp near-perfect inverted terminal repeats and has two open reading frames (ORFs) that could code for proteins of 233 and 137 amino acids. Upon insertion into target sites, this IS generates an 8-bp directly repeated target duplication. A 32-bp sequence in the region between ORF1 and ORF2 is similar to the sequence of the inverted termini. Similar inverted repeats are found within each of those three segments, and the sequences of these repeats bear some similarity to the 11-bp direct repeats flanking the 11-kb insertion interrupting the nifD gene of this strain (J. W. Golden, S. J. Robinson, and R. Haselkorn, Nature [London] 314:419-423, 1985). A sequence similar to that of a binding site for the Escherichia coli integration host factor is found about 120 bp from the left end of IS892. Partial nucleotide sequences of active IS elements IS892N and IS892T, members of the IS892 family from the same Anabaena strain, were shown to be very similar to the sequence of IS892.  相似文献   

16.
17.
A new functional Corynebacterium glutamicum insertion sequence (IS) element, IS13655, was isolated using a suicide vector. The IS element was 1,293 bp in size and contained 26-bp imperfect inverted repeats (IRs) and 3-bp target site duplication as direct repeats (DRs). IS13655 harbored two ORFs with high similarity to the transposase of IS1206, an IS3 family element. IS13655 revealed relatively high transposition efficiency, with low target site selectivity along the Corynebacterium glutamicum R genome, making it a potentially useful genetic engineering tool.  相似文献   

18.
A total of 153 nucleotide differences were found over a contiguous 16 kb region between two hyperthermophilic Archaea, Pyrococcus furiosus and Thermococcus litoralis. The 16 kb region in P. furiosus is flanked by insertion sequence (IS) elements with inverted and direct repeats. Both IS elements contain a single open reading frame (ORF) encoding a putative protein of 233 amino acids identified as a transposase. This 16 kb region has the features of a typical bacterial composite transposon and represents a possible mechanism for lateral gene transfer between Archaea or possibly between Archaea and Bacteria. A total of 23 homologous IS elements was found in the genome sequence of P. furiosus, whereas no full-length IS elements were identified in the genomes of Pyrococcus abyssi and Pyrococcus horikoshii. Only one IS element was found in T. litoralis. In P. furiosus and T. litoralis, the 16 kb region contains an ABC transport system for maltose and trehalose that was characterized biochemically for T. litoralis. Regulation of expression studies showed that the malE gene, located on the transposon, and the encoded trehalose/maltose-binding protein (TMBP) are induced in the presence of maltose and trehalose in both P. furiosus and T. litoralis. The implications of transposition as a mechanism for lateral gene transfer among Archaea are discussed.  相似文献   

19.
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.  相似文献   

20.
Using the broad host-range vector R751 to provide transfer functions, plasmid pVAL-1 and transposon Tn4351 were conjugally mobilized from Escherichia coli into Porphyromonas gingivalis. Transfer frequencies for both elements varied between 10(-6) and 10(-11), depending upon the recipient. The behavior of pVAL-1 and Tn4351 in P. gingivalis was essentially as described previously in Bacteroides spp. These data indicate that plasmid and transposon DNA can be conjugally transferred into P. gingivalis and that these elements can be used to genetically manipulate the organism in examining putative virulence determinants that may participate in the induction or exacerbation of periodontal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号