首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Stem cell factor (SCF) known as the c-kit ligand, plays important roles in spermatogenesis, melanogenesis and early stages of hematopoiesis. As for the latter, SCF is essential for growth and expansion of hematopoietic stem and progenitor cells. We herein describe the production of recombinant murine SCF from Escherichia coli as soluble thioredoxin-fusion protein. The formation of insoluble and inactive inclusion bodies, usually observed when SCF is expressed in E. coli, was almost entirely prevented. After purification based on membrane adsorber technology, the fusion protein was subsequently cleaved by TEV protease in order to release mature mSCF. Following dialysis and a final purification step, the target protein was isolated in high purity. Bioactivity of mSCF was proven by different tests (MTT analogous assay, long-term proliferation assay) applying a human megakaryocytic cell line. Furthermore, the biological activity of the uncleaved fusion protein was tested as well. We observed a significant activity, even though it was less than the activity displayed by the purified mSCF. In summary, avoiding inclusion body formation we present an efficient production procedure for mSCF, one of the most important stem cell cytokines.  相似文献   

2.
A multipotent immature myeloid cell population was produced from a basic fibroblast growth factor (bFGF)-dependent hematopoietic stem cell line, A-6, when cultured with stem cell factor (SCF) replacing bFGF. Those cells were positive for stem cell markers, c-kit and CD34, and a myeloid cell marker, F4/80. Some cell fractions were also positive for Mac-1, a macrophage marker or Gr-1, a granulocytic maker, but negative for an erythroid marker TER119. They also showed the expression of mRNA for the myeloid-specific PU.1 but did not that for the erythroid-specific GATA-1. Among various cytokines, interleukin-3 (IL-3) induced erythroid precursor cells that expressed the erythroid-specific GATA-1 and beta-major globin. The quantitative analysis showed that erythroid precursor cells were newly produced from the immature myeloid cells by cultivation with IL-3. SCF and IL-3 induced stepwise generation of erythroid precursor cells from an A-6 hematopoietic stem cell line.  相似文献   

3.
A serum free medium was developed, that could be used for the large scale propagation of various cell lines in bioreactors. The medium is based on a 1:1 mixture of Iscove's Modified Dulbecco's Medium and Ham's Medium F12, supplemented with transferrin, insulin and a BSA/oleic acid complex. Several myelomas, hybridomas derived from different myelomas and spleen cells, and other lymphoid and non-lymphoid cell lines were cultivated at growth rates comparable to those observed using serum-supplemented media. There was furthermore no reduction in the formation of products such as monoclonal antibodies or recombinant human interleukin-2.Abbreviations Ag8 Mouse myeloma cell line P3-X63-Ag8.653 - BME Basal Medium Eagle - BSA Bovine Serum Albumin - DMEM Dulbecco's Modified Eagle's Medium - EDTA Ethylenediaminete-traacetic Acid - e-PC Phosphatidyl choline from egg yolk - FCS Fetal Calf Serum - FGF Fibroblast Growth Factor - GHL Glycyl-histidyl-lysine - HDL High Density Lipoprotein - HPL Human Plasma Lipid - IF 1:1 mixture of IMDM and Ham's F12 - IMDM Iscove's Modified Dulbecco's medium - LDL Low Density Lipoprotein - NS1 Mouse myeloma cell line NSI-1-Ag4-1 - PBS Phosphate Buffered Saline - s-PC Phosphatidylcholine from soy beans - s-PE Phosphatidylethanolamine from soy beans - s-lecithin lecithin from soy beans  相似文献   

4.
Membrane-bound factors expressed by niche stromal cells constitute a unique class of localized cues and regulate the long-term functions of adult stem cells, yet little is known about the underlying mechanisms. Here, we used a supported lipid bilayer (SLB) to recapitulate the membrane-bound interactions between hematopoietic stem cells (HSCs) and niche stromal cells. HSCs cluster membrane-bound stem cell factor (mSCF) at the HSC-SLB interface. They further form a polarized morphology with aggregated mSCF under a large protrusion through a synergy with VCAM-1 on the bilayer, which drastically enhances HSC adhesion. These features are unique to mSCF and HSCs among the factors and hematopoietic populations we examined. The mSCF–VCAM-1 synergy and the polarized HSC morphology require PI3K signaling and cytoskeletal reorganization. The synergy also enhances nuclear retention of FOXO3a, a crucial factor for HSC maintenance, and minimizes its loss induced by soluble SCF. Our work thus reveals a unique role and signaling mechanism of membrane-bound factors in regulating stem cell morphology and function.  相似文献   

5.
Summary The isolation and characterization of human liver cell lines are rather difficult due to limited material and poor growth in cell culture. In this report, we present the isolation, culture and characterization of a new epithelial-like liver cell line (AKN-1) with a heterogeneous cell population and many characteristics of the biliary epithelium. The AKN-1 cell line stained positively with antibodies to epithelial cytokeratin polypetides CK 8, 18, and 19. In addition, the cell line expressed the anti-human epithelial-related antigen (MOC-31), the human epithelial antigen (HEA), and the gamma-glutamyl transpeptidase, the hematopoietic growth factor, stem cell factor, and also its receptor, c-kit. The cell line failed to express albumin and factor 8 by immunohistochemistry. It did show, however, a twofold increase in 7-ethoxyresorufin-O-deethylase activity. Cytogenetic characterization revealed rare breakpoints in chromosome 2, which to our knowledge, have not yet been reported in liver cells.  相似文献   

6.
The presence and role of the c-kit protein was investigated in the mature sperm of the mouse. The c-kit monoclonal antibody (mAb) ACK2 reacted specifically with the acrosomal region and the principal piece of fixed noncapacitated sperm but did not react with the acrosome region in acrosome-reacted sperm. ACK2 significantly inhibited the acrosome reaction; this inhibition was relieved by the calcium ionophore A23187. The kit ligand stem cell factor (SCF) significantly increased the percentage of sperm undergoing acrosome reaction. This increase was partially inhibited by the calcium channel inhibitor (verapamil), the PI3k inhibitor (wortmannin), and the PLC inhibitor (U-73122). ACK2 predominantly recognized c-kit proteins of 33, 48, and 150 kDa by Western blotting of mouse sperm extracts. The 48- and 150-kDa protein bands were released into the media and tyrosine autophosphorylated at low basal levels during acrosome reaction. On stimulation with SCF, the level of c-kit phosphorylation increased significantly. These findings suggest that c-kit is present in mature sperm, and its binding to SCF may result in the activation of PLCγ1 and PI3K, leading to receptor autophosphorylation, and ultimately may play a role in capacitation and/or the acrosome reaction. Mol. Reprod. Dev. 49:317–326, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
Sprouty/Spred family proteins have been identified as negative regulators of growth factor-induced ERK/mitogen-activated protein (MAP) kinase activation. However, it has not been clarified whether these proteins regulate cytokine-induced ERK activity. We found that Spred-1 is highly expressed in interleukin-3 (IL-3)-dependent hematopoietic cell lines and bone marrow-derived mast cells. To investigate the roles of Spred-1 in hematopoiesis, we expressed wild-type Spred-1 and a dominant negative form of Spred-1, DeltaC-Spred, in IL-3- and stem cell factor (SCF)-dependent cell lines as well as hematopoietic progenitor cells from mouse bone marrow by retrovirus gene transfer. In IL-3-dependent Ba/F3 cells expressing c-kit, forced expression of Spred-1 resulted in a reduced proliferation rate and ERK activation in response to not only SCF but also IL-3. In contrast, DeltaC-Spred augmented IL-3-induced cell proliferation and ERK activation. Wild-type Spred-1 inhibited colony formation of bone marrow cells in the presence of cytokines, whereas DeltaC-Spred-1 expression enhanced colony formation. Augmentation of ERK activation and proliferation in response to IL-3 was also observed in Spred-1-deficient bone marrow-derived mast cells. These data suggest that Spred-1 negatively regulates hematopoiesis by suppressing not only SCF-induced but also IL-3-induced ERK activation.  相似文献   

8.

Background

DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification.

Methodology

We modified the BJAB lymphoblastoma cell line to over-express the murine c-kit cell surface receptor. After six rounds of cell-SELEX, high-throughput sequencing and bioinformatics analysis, we identified aptamers that bound BJAB cells expressing c-kit but not wild-type BJAB controls. One of these aptamers also recognizes c-kit endogenously expressed by a mast cell line or hematopoietic progenitor cells, and specifically blocks binding of the c-kit ligand stem cell factor (SCF). This aptamer enables better separation by fluorescence-activated cell sorting (FACS) of c-kit+ hematopoietic progenitor cells from mixed bone marrow populations than a commercially available antibody, suggesting that this approach may be broadly useful for rapid isolation of affinity reagents suitable for purification of other specific cell types.

Conclusions/Significance

Here we describe a novel procedure for the efficient generation of DNA aptamers that bind to specific cell membrane proteins and can be used as high affinity reagents. We have named the procedure STACS (Specific TArget Cell-SELEX).  相似文献   

9.
N-terminal myristoylation can promote the association of proteins with the plasma membrane, a property that is required for oncogenic variants of Src and Abl to transform fibroblastic cell types. The P210bcr/abl protein of chronic myelogenous leukemia cells is not myristoylated and does not stably transform NIH 3T3 fibroblasts; however, it will transform lymphoid and myeloid cell types in vitro and in vivo, suggesting that myristoylation is not required for Abl variants to transform hematopoietic cells. To test this hypothesis, we introduced point mutations that disrupt myristoylation into two activated Abl proteins, v-Abl and a deletion mutant of c-Abl (delta XB), and examined their ability to transform an interleukin-3-dependent lymphoblastoid cell line, Ba/F3. Neither of the nonmyristoylated Abl proteins transformed NIH 3T3 fibroblasts, but like P210bcr/abl, both were capable of transforming the Ba/F3 cells to factor independence and tumorigenicity. Nonmyristoylated Abl variants did not associate with the plasma membrane in the transformed Ba/F3 cells. These results demonstrate that Abl proteins can transform hematopoietic cells in the absence of membrane association and suggest that distinct functions of Abl are required for transformation of fibroblast and hematopoietic cell types.  相似文献   

10.
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin alpha2beta1(hi) and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 microg/ml insulin (DMEM+10% FBS+Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.  相似文献   

11.
Stem cell factor and its receptorc-kitconstitute an important signal transduction system implicated in survival, proliferation, and differentiation of stem cells in hematopoiesis, gametogenesis, and melanogenesis. In the present study we used both immunocytochemical methods and Western analysis to demonstrate the presence of this cytokine/receptor system in both embryonic and adult rat liver. Stem cell factor was present in the ductular cells around the portal vein during the late embryonic stage of the liver. In the adult liver both bile ducts and bile ductules were positive for stem cell factor andc-kit.When the activation of the liver stem cell compartment was induced by combining administration of acetylaminofluorene and partial hepatectomy, both stem cell factor andc-kitwere expressed in the infiltrating oval cell population, but absent in the newly formed basophilic hepatocytes. Activation of oval cell proliferation following administration ofD-galactosamine also produced a similar but less prominent increase in the level of the stem cell factor. Our data suggest that the stem cell factor/c-kitsignal transduction system is involved in the development of bile ducts and that it may also be an important member of the growth factor/receptor systems associated with the biology of liver stem cells.  相似文献   

12.
Multipotent hematopoietic stem cells are maintained by the bone marrow niche, but how niche-derived membrane-bound stem cell factor (mSCF) regulates HSCs remains unclear. In this issue, Hao et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010118) describe that mSCF, synergistically with VCAM-1, induces large, polarized protrusions that serve as anchors for HSCs to their niche.

Hematopoietic stem cells (HSCs) generate all blood and immune cells throughout life via self-renewal and multilineage differentiation within the bone marrow niche. HSCs are the basis for bone marrow transplantation, saving thousands of lives yearly. The bone marrow niche often serves as a paradigm for studying stem cell biology. In addition, elucidating the underlying mechanism in the niche helps devise strategies to expand functional HSCs for clinical use. Within the niche, leptin receptor–positive perisinusoidal stromal cells and endothelial cells are the major source of essential cytokines for HSC maintenance, including vascular cell adhesion molecule 1 (VCAM-1) and stem cell factor (SCF; 1, 2). Locally produced soluble and membrane-bound cytokines preserve the unique localization and anchorage of HSCs to stromal cells within their niche. Consistent with this notion, mouse genetic data have shown that membrane-bound SCF (mSCF) is important for HSC maintenance in vivo (3). However, given that both soluble and membrane-bound forms of SCF can engage with the cognate cKIT receptors, the mechanisms by which mSCF sustains HSCs function in vivo remain elusive. Likewise, it is unclear why the expansion and maintenance of HSCs ex vivo by adding SCF to culture as an either soluble or immobilized form has only been achieved with limited success.In this issue, Hao et al. addressed this question by using a supported lipid bilayer (SLB) system to model the interaction between HSCs and membrane-bound cytokines, including SCF (4). SLBs present an advantage over conventional immobilization methods; they allow the lateral mobility of membrane-bound proteins and clustering of receptors and signaling complexes, thus resembling the lipid bilayer of plasma membrane in vivo. Focusing on HSC cytokines that may be presented as membrane-bound forms in the bone marrow niche, the authors performed an imaging screen in vitro using SLBs and found that mSCF but not soluble SCF (sSCF) induced mSCF/cKIT clustering and the formation of membrane protrusions on HSCs. While mSCF alone was sufficient to promote cell protrusions, HSCs required both mSCF and VCAM-1 for large, polarized protrusions. They followed HSCs at different time points after exposure to VCAM-1 and mSCF by scanning electron microscopy and observed that HSCs first formed diffuse mSCF clusters and multifocal thin protrusions and then proceeded to a polarized, clustered morphology with larger and thicker protrusions. Using a controlled sheer stress device, Hao et al. showed that these polarized protrusions had a functional consequence on the adhesion strength of HSCs. mSCF and VCAM-1 dramatically increased the adhesion of HSCs to SLB compared with VCAM-1 or mSCF alone. Interestingly, the effect was more prominent in HSCs compared with their immediate downstream progenies, multipotent progenitors. This phenotype was also specific to ligands presented on SLB because the effect was canceled when the cytokines were directly immobilized onto the glass surface. Then, they had a close look into the cytoskeletal organization of HSCs in the presence of both mSCF and VCAM-1 on SLB. They found that F-actin and myosin IIa concentrated at the protrusion, which led them to speculate that the cytoskeleton remodeling mediates the formation of the polarized morphology. Indeed, chemical inhibitors blocking myosin contraction, actin polymerization, or Rho-associated protein kinase disrupted the formation of the large and polarized protrusion. The authors noted that phosphatidylinositol 3-kinase (PI3K) also localized with mSCF/cKIT clusters, so they further assessed the contribution of the PI3K/Akt pathway to the polarized morphology of HSCs by using total internal reflection fluorescence microscopy and PI3K and Akt chemical inhibitors. PI3K/Akt activation contributed downstream of the mSCF–VCAM-1 synergy to regulating HSC cell adhesion and polarized mSCF/cKIT distribution. In addition, PI3K signaling enhanced the nuclear retention of FOXO3a, a crucial factor for HSC self-renewal; this enhancement was induced by mSCF but lessened by sSCF. Intriguingly, sSCF also competed with mSCF and abrogated the effect of the mSCF–VCAM-1 synergy on polarized protrusion formation. However, whether and how PI3K transmits the mSCF–VCAM-1 synergy into proliferation or quiescence cues in HSCs requires further investigation. Taken together, these data suggest that mSCF and VCAM-1 synergize to induce polarized protrusions on HSCs, which regulates their adhesion to the niche (Fig. 1). These protrusions share many features with the immunological synapse (5), which points toward the existence of a similar model for stem cells, “stem cell synapse,” where HSCs interact with and receive a variety of signals from their niche cells.Open in a separate windowFigure 1.VCAM-1 and mSCF synergistically promote the formation of polarized protrusions (stem cell synapse) on HSCs. (A and B) VCAM-1 or mSCF alone does not induce apparent polarized morphology on HSCs. The signaling and adhesion of HSCs to the niche is not at its full potential. (C) VCAM-1 and mSCF together induce robust receptor clustering on HSCs, optimal signaling, and strong adhesion. (D) sSCF can competitively disrupt the polarized protrusions on HSCs. The figure was created with BioRender.com.While the study by Hao et al. sheds light on how niche signals, particularly mSCF, regulate HSCs, several outstanding questions remain. First, even though many hematopoietic cells express cKIT (some of them even express higher levels than HSCs), HSCs respond to mSCF + VCAM-1 the strongest by recruiting the most mSCF to clusters. What is the specific mechanism in HSCs underlying this specificity? Second, SCF is produced both as mSCF and sSCF in vivo, through alternative splicing and proteolytic cleavage; if mSCF is mainly responsible for anchoring HSCs in the niche, what is the function of sSCF in vivo? Does sSCF modulate the available pool of mSCF? Third, robust maintenance of HSCs in culture has been challenging. HSCs can be maintained in a system composed of sSCF, thromopoietin (TPO), fibronectin, and polyvinyl alcohol (6). Tethering cytokines to SLB elicits more physiological response from HSCs compared with soluble cytokines or direct immobilization. Does SLB improve maintenance of HSCs in in vitro culture? Fourth, some cytokines, such as TPO, act on HSCs in a long-range manner (7). How do these systemic cytokines induce robust signaling in HSCs? Do they participate in the stem cell synapse even if they are not the initiators? Finally, do stem cells and their niche interact by forming similar synapses in other stem cell systems? Answering these questions will deepen our understanding of the stem cell niche and help integrate the niche component into potential, more successful applications in regenerative medicine.  相似文献   

13.
Stromal cell-derived factor-1alpha (SDF-1alpha) is a strong migratory stimulant for hematopoietic stem and progenitor cells (HSPCs). The hematopoietic cytokines thrombopoietin (TPO), Flt3-ligand (FL), stem cell factor (SCF) and interleukin 11 (IL-11) are able to stimulate amplification of primitive murine hematopoietic stem cells (HSCs) in vitro. The effects of these cytokines on SDF-1alpha-induced migratory activity of murine Lin(-)c-kit+ HSPC were analyzed by cultivation of these cells in the presence of 12 combinations of FL, TPO, SCF and IL-11. Migratory activity was measured in a three-dimensional collagen matrix using time-lapse video microscopy. Each cytokine combination had a distinct effect on SDF-1alpha-stimulated migratory activity. For instance, FL- and SCF-cultivated cells showed a high migratory SDF-1alpha response, while cells cultivated with SCF, TPO and IL-11 did not react to SDF-1alpha stimulation with an elevated migration rate. Our data indicate that the differences in the migratory SDF-1alpha response are not related to different CXCR4 expression levels, but rather to the differential engagement of the CXCR4-dependent MAPK p42/44 and PI3K signal transduction pathways. This indicates that hematopoietic cytokines can have a significant impact on SDF-1alpha-stimulated migratory activity and the underlying intracellular signaling processes in cultivated HSPCs.  相似文献   

14.
We constructed a series of murine stem cell factor (mSCF) cDNAs which were sequentially truncated at the 3' termini. The resultant six mutant cDNA encode N-terminal 183, 179, 162, 149, 142 and 133 amino acid residues of the mature mSCF protein fused to the heterogeneous C-terminal peptides derived from the linker sequences. Each mutant cDNA was transiently expressed in COS cells, and the cultured supernatant was assayed for its ability to support the growth of a human factor-dependent cell line, TF-1 and to enhance colony formation by murine hematopoietic progenitor cells. The results showed that as few as N-terminal 142 but not 133 amino acid residues of mSCF remained biologically active in vitro, suggesting that the region of 9 amino acids from Asp134 to Ser142 containing a Cys138-mediated disulfide bond may contribute to the C-terminal end of the active subdomain of mSCF.  相似文献   

15.
目的观察小鼠心肌梗死后骨髓造血干细胞在心脏内的分化及细胞因子的影响。方法C57/BL6小鼠60只分为骨髓动员组和对照组,先后行脾切除、骨髓移植(骨髓供体为增强绿色荧光蛋白转基因小鼠)、骨髓动员及建立心肌梗死模型。心肌梗死后3周将小鼠心脏取出并切片行组织学及激光共聚焦显微镜免疫荧光检查。结果骨髓动员可以增加EGFP阳性细胞在心脏中梗死区和边缘区的定植,但绝大多数EGFP阳性细胞都同时表达CD45。仅发现有极少数骨髓来源的心肌细胞、成纤维细胞及血管内皮细胞,且与骨髓动员无相关性。结论骨髓动员能够明显促进骨髓来源细胞定植入小鼠心脏的梗死区;极少数骨髓造血干细胞可以分化为心肌细胞,其数量远不足以修复梗死心肌及改善心功能;骨髓造血干细胞不参与梗死区疤痕形成的病理过程。  相似文献   

16.
研究1例来源于4月龄男性流产胎儿胰腺组织的单克隆人胰腺干细胞(monoclonal human pancreatic stem cell,mhPSC)系的体内外分化特性。将mhPSCs接种在铺有0.1%明胶的培养皿内,扩增培养3d后,加高糖DMEM诱导液诱导培养25d。相差显微镜下.观察细胞生长状况。采用双硫腙染色法、RT—PCR及葡萄糖刺激释放胰岛素和C肽实验.对体外定向诱导mhPSCs分化为功能性胰岛进行检测。将mhPSCs悬液注射在成年雄性裸鼠腹股沟皮下.注射30d时,取出移植物,采用SP法进行免疫组织化学反应,以检测mhPSCs的体内自然分化潜能。体外扩增培养,mhPSCs贴壁生长,呈多角形上皮样。生长至单层.呈“铺路石”状。体外定向诱导,细胞逐渐由多角形变成圆形,并聚集成类胰岛。诱导培养15d时.形成的类胰岛中少数细胞分化为B细胞,双硫腙染色阳性。诱导培养25d时,多数细胞分化为8细胞,双硫腙染色阳性,转录表达胰岛素的mRNA。用不同浓度葡萄糖刺激.诱导胰岛不仅释放胰岛素和C肽,而且其释放量随糖刺激浓度升高显著增加(0.01〈P〈0.05)。体内分化实验显示,mhPSCs在裸鼠背部形成类畸胎瘤。类畸胎瘤易与裸鼠分离,色白,血管丰富。显著表达pdx1、胰岛素、胰高血糖素、CK、MBP及NF蛋白。该研究结果证实单克隆人胰腺干细胞系体外定向诱导分化为包含大量β细胞的功能性类胰岛,在体内自然分化为胰岛、上皮及神经组织细胞。  相似文献   

17.
18.
Spermatogenesis is initiated with the divisions of the type A spermatogonial stem cells; however, the regulation of this stem cell population remains unknown. In order to obtain a better understanding of the biology of these cells, type A spermatogonia were isolated from 80-day-old pig testes by sedimentation velocity at unit gravity. The cells were cultured for up to 120 h in Dulbecco's modified Eagle's medium/Ham's F-12 medium (DMEM/F12) or a potassium-rich medium derived by the simplex optimization method (KSOM). At the end of the 120-h culture period, 30-50% of the spermatogonia were viable in KSOM, whereas in DMEM/F12 very few cells survived. Using KSOM as the culture medium, the effects of stem cell factor (SCF) and granulocyte macrophage-colony stimulating factor (GM-CSF) were studied. SCF significantly enhanced the percentage of cell survival at 100 ng/ml but not at lower concentrations. In comparison, GM-CSF promoted survival at relatively low concentrations (0.01, 0.1, and 1 ng/ml). At a higher dose (10 ng/ml), a significant reduction in percentage of cell survival was observed. The combination of SCF with GM-CSF had no significant effect on the percentage survival of type A spermatogonial cells. These data indicate that SCF and GM-CSF play a role in the regulation of survival and/or proliferation of type A spermatogonia.  相似文献   

19.
An exogenous supply of hematopoietic cytokines is essential for maintaining murine embryonic stem (ES) cells in a proliferative yet undifferentiated state. Recently, it was demonstrated that hematopoietic cytokines utilize the gp130 signal transduction pathway to maintain this phenotype, although their involvement toward maintaining porcine ES cell pluripotency has not been established. Therefore, the objective of this study was to determine the effectiveness of several heterologous hematopoietic cytokines at maintaining the isolated porcine inner cell masses (pICM) in an undifferentiated state. pICMs (day 7) were isolated by immunosurgery and cultured 4 days in one of six treatments: control medium, human leukemia inhibitory factor (hLIF; 1,000 u/ml), human interleukin-6 (hlL-6; 100 ng/ml), hlL-6 + hlL-6 soluble receptor (hlL6 + sR; 100 ng/ml + 2.5 μg/ml), human oncostatin M (hOSM; 100 ng/ml), or rat ciliary neurotrophic factor (rCNTF; 100 ng/ml). All cytokines were prepared in Dulbecco's Modified Eagle's Medium/Ham's F-10 (1:1)-based medium. Morphology of plCMs was evaluated on a scale of 1 (fully undifferentiated) to 5 (fully differentiated) at 24-h intervals. Differentiation was significantly lower on day 2 for rCNTF vs. hLIF cultured plCMs (2.07 ± 0.15 vs. 2.70 ± 0.16; P < 0.05). Furthermore, addition of rCNTF gave the lowest overall mean differentiation score (2.53 ± 0.15). However, none of the cytokines significantly delayed differentiation over controls for the 4-day culture period (P > 0.05). Since these heterologous cytokines were unable to inhibit differentiation, it is unlikely they will be beneficial towards isolating porcine ES cell lines under current conditions. Future work with homologous cytokines and dose effects may prove more beneficial. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Dimethylsulfoxide (DMSO) is a well-known solvent that is commonly used in the laboratory. We selected DMSO as the vehicle for an experiment designed to determine if several nonsteroidal anti-inflammatory agents inhibit the growth of Caov-3, OVCAR-3, and SK-OV-3 ovarian carcinoma cell lines. Using the tetrazolium conversion assay, however, we observed some variability in the number of cells present in each ovarian carcinoma cell line with varying concentrations of DMSO (10(-6)-10(-2) M) compared to medium alone. Similarly, when Caov-3, OVCAR-3, and SK-OV-3 cells were treated with 10(-4) M DMSO plus medium (Dulbecco's Modified Eagle Medium with 10% fetal bovine serum) and plated on coverslips, the total number of cells present in 60 random fields increased significantly (P < 0.0001) for each ovarian carcinoma cell line treated with DMSO compared to medium alone. Ethanol did not demonstrate such prominent effects on cellular growth. Our observations are important to consider when selecting an appropriate solvent, especially for growth inhibition studies using Caov-3, OVCAR-3, and SK-OV-3 cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号