首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cytochrome c synthetase in yeast mitochondria catalyzes the formation of a yeast cytochrome c-like species from the apoprotein and hemin (Basile, G., DiBello, C., and Taniuchi, H. (1980) J. Biol. Chem. 255, 7181-7191). To test the specificity of this enzyme, 125I-labeled horse apocytochrome c was incubated with the yeast mitochondrial fraction in the presence of hemin, NADPH, and an ethanol extract of the postmitochondrial fraction. A radioactive 125I-labeled cytochrome c-like species was formed in yields of up to 26%. This 125I-labeled species is indistinguishable from horse cytochrome c by ion exchange chromatography (under the conditions which allow separation of horse and yeast cytochrome c), resistance in its reduced form to digestion by trypsin, resistance against autoxidation, reduction by cytochrome b2, and generation of the apoprotein after treatment with silver sulfate and dithiothreitol. With unlabeled horse apoprotein and [59Fe]hemin, the yield of a [59Fe-labeled horse cytochrome c-like species was up to 7% with respect to the apoprotein incubated. The yield of the 59Fe-labeled species was not altered by the addition of unlabeled FeCl3. Conversely, synthesis of the 59Fe-labeled species was not detectable after incubation of yeast mitochondria with unlabeled horse apoprotein, unlabeled hemin, and 59FeCl3. The formation of both 125I- and 59Fe-labeled cytochrome c-like species was sensitive to heat. Thus, we conclude that cytochrome c synthetase catalyzes direct bonding of heme (or hemin) to the apoprotein. Since the amino acid sequences of horse and yeast cytochromes c differ considerably, cytochrome c synthetase may recognize only a limited region(s) of the apoprotein.  相似文献   

2.
Incubation of the 125I-labeled apoprotein, prepared from 125I-labeled iso-1-cytochrome c, with a yeast mitochondrial fraction in the presence of hemin, NADPH, and an extract of the postmitochondrial fraction at 32 +/- 1 degree C for 30 min has resulted in formation of cytochrome c-like species in yields of up to 35%. This radioactive synthesized species contains a functional group which responds to reduction with ascorbate and oxidation with K3Fe(CN)6 in that it is resistant in the reduced form and susceptible in the oxidized form to trypsin action in a manner characteristic of native cytochrome c. The functional group cannot be removed from the protein by cold HCl-acetone or 8 M urea treatment. The reduced form of the synthesized species exhibits resistance against autoxidation and the oxidized form can be reduced also by cytochrome b2. The synthesized species exhibits the same compact hydrodynamic volume of native cytochrome c. Treatment with silver sulfate followed by incubation with dithiothreitol converts the synthesized species to the original apoprotein as judged by an increase in the hydrodynamic volume. Thus, the synthesized species is indistinguishable from the original labeled iso-1-cytochrome c by these measurements; i.e. the synthesized species consists of the apoprotein to which heme is covalently attached through the thioether bond(s). The active factor of the mitochondrial fraction is heat-labile. The synthetic activity is strongly dependent on pH with a maximum approximately at pH 7.0. Hemin (or heme) appears to be required for this synthesis. The postmitochondrial fraction is inactive by itself. However, its addition markedly increases the synthetic activity. This factor is heat-stable, soluble in 80% methanol (or 75% ethanol), and insoluble in ethyl ether or ethyl acetate. Addition of NADP(H) (or NAD(H)) also increases the synthetic activity, the reduced form being more effective than the oxidized form. The postmitochondrial factor and the pyridine nucleotides appear to enhance the effect of each other. Thus, it seems that cytochrome c or a cytochrome c-like species is formed from the apoprotein and heme (or hemin) by an enzyme, cytochrome c synthetase, present in mitochondria.  相似文献   

3.
Perfusion of homologous 125I-labeled rat very low density lipoprotein through isolated rat lungs in the presence of heparin resulted in apoprotein proteolysis. At least the apoprotein C was degraded into two peptides smaller than 7500 daltons as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The lung uptake of radioactivity was small and due mainly to the presence of the larger of the two peptides. The lung protease was not active against an 125-I-labeled albumin substrate and was not released into the medium by heparin.  相似文献   

4.
Clearance and distribution of acid-stable trypsin inhibitor (ASTI)   总被引:2,自引:0,他引:2  
The clearance, organ distribution and metabolic pathway of the acid-stable trypsin inhibitor (ASTI) were studied in mice using 125I-labeled urinary trypsin inhibitor (UTI), the most typical ASTI in the urine. Following intravenous injection of 125I-UTI, the radioactivity disappeared rapidly from the circulation with a half-life of 4 min for the initial part of the curve. Gel filtration of plasma samples revealed that the rapid disappearance of the radioactivity was due to elimination of free inhibitor from the plasma. 125I-UTI was cleared primarily in the kidney. Gel filtration of urine samples showed that part of the radioactivity in the urine appeared at the same elution volume as 125I-UTI in the plasma, indicating that the origin of UTI was ASTI in the plasma.  相似文献   

5.
B L Trumpower  A Katki 《Biochemistry》1975,14(16):3635-3642
When purified bovine cytochrome c1 is digested with trypsin under controlled conditions, the heme polypeptide is preferentially converted from a species of molecular weight 30,600 to a heme polypeptide of molecular weight 29,000. The trypsin sensitive peptide bond is located in the N-terminal region of the cytochrome. Both the reduced and oxidized cytochrome are susceptible to hydrolysis by trypsin at the same locus, but the reduced cytochrome is cleaved at an initial rate approximately twofold greater than the oxidized cytochrome. Membranous cytochrome c1, as occurring in cytochrome b-c1 complex or succinate-cytochrome c reductase complex, is not susceptible to trypsin proteolysis under similar conditions, nor after more extensive treatment of the membranes with trypsin, in spite of the fact that cytochrome c1 presumably comes into contact with cytochrome c at the membrane surface during electron transport. These findings are consistent with a model for the structure of cytochrome c1 in situ in which the cytochrome is an integral membrane protein, located primarily in the membrane continuum, while still having the heme-containing portion of the protein available at the membrane surface for electron transfer to cytochrome c.  相似文献   

6.
A method was developed for direct microsequencing of N alpha-acetylated proteins electroblotted onto polyvinylidene difluoride membranes from polyacrylamide gels. N alpha-Acetylated proteins (greater than 32 pmol), including horse heart cytochrome c, five mutants of yeast cytochrome c, and bovine erythrocyte superoxide dismutase, were separated by SDS-PAGE and electroblotted onto polyvinylidene difluoride membranes. The portions of the membrane carrying the bands were cut out and treated with 0.5% polyvinylpyrrolidone in acetic acid solution at 37 degrees C for 30 min. The protein was digested on the membrane with 5-10 micrograms of trypsin at 37 degrees C for 24 h. During tryptic digestion, the resultant peptides were released from the membrane and the N-terminal peptide was efficiently deblocked with 50 mU of acylamino acid-releasing enzyme at 37 degrees C for 12 h. Picomole levels of the deblocked proteins could be sequenced directly by use of a gas-phase protein sequencer.  相似文献   

7.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37 degrees C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37 degrees C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37 degrees C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37 degrees C, 80% of the cell-bound radioactivity was not extractable from GH3, cells with acetic acid.  相似文献   

8.
There was a rapid transfer of radioactive peptides to other lipoprotein fractions during the first 30 min after the intravenous injection of 125I-labeled rat very low density lipoprotein (VLDL) into rats. After this initial redistribution of radioactivity, label disappeared slowly from all lipoprotein fractions. The disappearance of 125I-labeled human VLDL injected into rats was the same as that of rat VLDL. Most of the radioactivity transferred from VLDL to low density (LDL) and high density (HDL) lipoproteins was associated with two peptides, identified in these studies by polyacrylamide gel electrophoresis as zone IVa and IVb peptides (fast-migrating peptides, possibly analogous to some human C apolipoproteins), although radioactivity initially associated with zone I (analogous to human apolipoprotein B) and zone III (not characterized) was also transferred to LDL and HDL. That the transfer of label from VLDL to LDL and HDL primarily involved small molecular weight peptides was confirmed in studies using VLDL predominantly labeled in these peptides by in vitro transfer from 125I-labeled HDL. Both zone I and zone IV radioactivity was rapidly removed from VLDL during the first 5 min after injection. However, although most of the zone IV radioactivity was recovered in LDL and HDL, only 12% of the label lost from zone I of VLDL was recovered in other lipoproteins, with the remainder presumably having been cleared from the plasma compartment. We have concluded that, during catabolism of rat VLDL apoprotein, there is a rapid transfer of small molecular weight peptides to both LDL and HDL. During the catabolic process, most of the VLDL is rapidly removed from the circulation, with only a small portion being transformed into LDL molecules.  相似文献   

9.
Studies on the biosynthesis of cytochrome c   总被引:4,自引:1,他引:3       下载免费PDF全文
A soluble cytochrome was isolated and purified from the slime mould Physarum polycephalum and identified as cytochrome c by room-temperature and low-temperature (77 degrees K) difference spectroscopy. A close similarity between P. polycephalum and mammalian cytochromes c was suggested by a comparison of the initial rates of oxidation of both proteins by mammalian mitochondria. This similarity was further emphasized by redox titrations and gel-electrophoretic studies which indicated that P. polycephalum cytochrome c has an oxidation-reduction midpoint potential of +257mV at pH7.0 and a molecular weight of 12500+/-1500 (mean+/-maximum deviation for a set of six measurements). P. polycephalum exhibits an absolute requirement for protohaemin for growth. The (59)Fe-labelled haemin was prepared by chemical synthesis from protoporphyrin. The purified product had a specific radioactivity of 0.8+/-0.02muCi/mol. Growth of P. polycephalum in the presence of [(59)Fe]haemin resulted in the incorporation of (59)Fe into the plasmodial cytochrome c. The specific radioactivity of the cytochrome c haem was 0.36+/-0.02muCi/mol. The high specific radioactivity of the cytochrome haem indicates that synthesis of the holoenzyme must proceed by direct attachment of haem to the apoprotein rather than by the intermediate formation of a protoporphyrinogen-apoprotein complex. The observed decrease in the specific radioactivity of the haem group is attributed to exchange of the (59)Fe with unlabelled iron in the plasmodia either before or during attachment of the haem group to the apoprotein.  相似文献   

10.
The reaction of yeast alcohol dehydrogenase with iodoacetate produces a loss of 90% of the enzymatic activity when 2.2–2.4 equivalents of carboxymethyl groups are incorporated. After CNBr cleavage of the 14C-carboxymethylated enzyme the more radioactive fragment was maleylated and digested with trypsin. A tryptic peptide, containing about 70% of initial radioactivity, was purified and sequenced. The cysteine found to be more reactive with iodoacetate in our experimental conditions is different from that found in previous works. It also appears to differ from the cysteine residues found to be reactive towards other thiol reagents.  相似文献   

11.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

12.
Yeast mitochondria and purified yeast cytochrome c oxidase incorporated into micelles of the nonionic detergent Tween 80 were equilibrated with the hydrophobic aryl azides 5-[125I]iodonaphthyl-1-azide or S-(4-azido-2-nitrophenyl)-[35S]thiophenol. The azides were then converted to highly reactive nitrenes by flash photolysis or by illumination for 2 min and the derivatized cytochrome c oxidase subunits were identified by gel electrophoresis and radioactivity measurements. 5-[125I]Iodonaphthyl-1-azide labeled mainly the three mitochondrially made Subunits I to III and the cytoplasmically made Subunit VII. Subunits IV to VI or cytochrome c bound to the purified enzyme were labeled 9- to 90-fold less. Essentially the same result was obtained with S-(4-azido-2-nitrophenyl)-[35S]thiophenol except that Subunit V was labeled as well. In contrast, all seven subunits as well as cytochrome c were heavily labeled when the enzyme was dissociated with dodecyl sulfate prior to photolabeling with either of the two probes. These data indicate that all subunits of yeast cytochrome c oxidase except Subunits IV and VI are at least partly embedded in the lipid bilayer of the mitochondrial inner membrane.  相似文献   

13.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

14.
Incubation of 125I-labeled very low density lipoprotein (VLDL) with lipoprotein lipase-rich (postheparin) plasma obtained from intact or supradiaphragmatic rats resulted in the transfer of more than 80% of apoprotein C from VLDL to high density lipoprotein (HDL), whereas apoprotein B was associated with lipoprotein of density less than 1.019 g/ml (intermediate lipoprotein). The transfer of 125I-labeled apoprotein C from VLDL to HDL increased with time and decreased in proportion to the amount of VLDL in the incubation system. A relationship was established between the content of triglycerides and apoprotein C in VLDL, whereas the amount of apoprotein C in VLDL was independent of that of other apoproteins, especially apoprotein B. The injection of heparin to rats preinjected with 125I-labeled VLDL caused apoprotein interconversions similar to those observed in vitro. The intermediate lipoprotein was relatively rich in apoprotein B, apoprotein VS-2, cholesterol, and phospholipids and poor in triglycerides and apoprotein C. The mean diameter of intermediate lipoprotein was 269 A (compared with 427 A, the mean Sf rate was 30.5 (compared with 115), and the mean weight was 7.0 X 10(6) daltons (compared with 23.1 X 10(6)). From these data it was possible to calculate the mass of lipids and apoproteins in single lipoprotein particles. The content of apoprotein B in both particles was virtually identical, 0.7 X 10(6) daltons. The relative amount of all other constituents in intermediate lipoprotein was lower than in VLDL: triglycerides, 22%; free cholesterol, 37%; esterified cholesterol, 68%; phospholipids, 41%; apoprotein C, 7%, and VS-2 apoprotein, 60%. The data indicate that (a) one and only one intermediate lipoprotein is formed from each VLDL particle, and (b) during the formation of the intermediate lipoprotein all lipid and apoprotein components other than apoprotein B leave the density range of VLDL to a varying degree. Whether these same changes occur during the clearance of VLDL in vivo is yet to be established.  相似文献   

15.
We have developed a technique for isolating apoprotein C-III by immunoaffinity chromatography, allowing the measurement of its specific radioactivity in lipoprotein fractions from small plasma samples. IgG specific for apoC-III was purified from goat antisera and bound to Sepharose. One ml of this gel (5 mg of IgG) bound 80-90 micrograms of apoC-III. The specific activity of apoC-III was determined by application of delipidated very low density lipoproteins to 1-ml columns and analysis of the protein eluted at pH 2.5 for mass and radio-activity. The coefficient fo variation for apoC-III specific activity determination from 125I-labeled VLDL was 4.3%. Minimal contamination of the eluates by apoproteins B, E, and C-II was confirmed by radioimmunoassay (0.3-1.2%). Following the injection of autologous 125I-labeled VLDL, specific activity decay curves for VLDL apoC-III were biexponential, with the clearance of apoC-III being slower in hypertriglyceridemic subjects. These affinity columns can be used repeatedly and yield reproducible results. This technique should be useful for simultaneous studies of the turnover of several apoproteins in the same individual following a single injection of labeled autologous lipoprotein.  相似文献   

16.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

17.
125I-labeled polymeric fibrin hydrolyzed with plasmin, Val442-plasmin (miniplasmin, Lys530-plasmin (microplasmin) and trypsin has been studied for radioactivity of its separate electrophoretic bands. The reaction of hydrolysis was stopped at a moment of a two-fold decrease of the fibrin clot turbidity (t1/2) at the wave length 350 nm. For plasmin, miniplasmin, microplasmin and trypsin taken in the same caseinolytic activities t1/2 was 12.4, 40.0 164.1 and 76.8 min, respectively. Differences in composition of fibrin digests taken at t1/2, are demonstrated: the content of high-molecular components of digests decreases in the order of plasmin greater than miniplasmin greater than microplasmin greater than trypsin, thus showing differences in the processes of fibrin clot structure disruption by the enzymes.  相似文献   

18.
Subcellular fractionation techniques have been used to assess the localization of injected 125I-labeled cholera toxin (125I-CT) taken up by rat liver in vivo, and to determine whether internalization of the toxin is required for the generation of the active A1 peptide. The uptake of injected 125I-CT into the liver is maximal at 5 min (about 10% injected dose/g). At this time the radioactivity is for the most part recovered in the microsomal (P) fraction, but later on it progressively associates with the mitochondrial-lysosomal (ML) and supernatant fractions. The radioactivity is enriched 7-fold in plasma membranes at 5-15 min, and 15-60-fold in Golgi-endosome (GE) fractions at 15-60 min. On analytical sucrose gradients the radioactivity associated with the P fraction is progressively displaced from the region of 5'-nucleotidase (a plasma membrane marker) to that of galactosyltransferase (a Golgi marker). On Percoll gradients, however, it is displaced towards acid phosphatase (a lysosomal marker). Density-shift experiments, using Triton WR 1339, suggest that some radioactivity associated with the P fraction (at 30 min) and all the radioactivity present in the ML fraction (at 2 h) is intrinsic to acid-phosphatase-containing structures, presumably lysosomes. Comparable experiments using 3,3'-diaminobenzidine cytochemistry indicate that the radioactivity present in GE fractions is separable from galactosyltransferase, and thus is presumably associated with endosomes. The fate of injected 125I-labeled cholera toxin B subunit differs from that of the whole toxin by a more rapid uptake (and/or clearance) of the ligand into subcellular fractions, and a greater accumulation of ligand in the ML fraction. Analysis of GE fractions by SDS/polyacrylamide gel electrophoresis shows that, up to 10 min after injection of 125I-CT, about 80% of the radioactivity is recovered as A subunit and 20% as B subunit, similarly to control toxin. Later on there is a time-dependent decrease in the amount of A subunit and, at least with the intermediate GE fraction, a concomitant appearance of A1 peptide (about 15% of the total at 60 min). In contrast the radioactivity associated with plasma membranes remains indistinguishable from unused toxin. It is concluded that, upon interaction with hepatocytes, 125I-CT (both subunits A and B) sequentially associates with plasma membranes, endosomes and lysosomes, and that endosomes may represent the major subcellular site at which the A1 peptide is generated.  相似文献   

19.
Glycophorin was purified from human erythrocyte ghosts by the lithium diiodosalicylate -phenol procedure utilizing 125I-labeled lithium diiodosalicylate. The glycophorin preparation was found to contain 8.9 +/- 2.1 mol lithium diiodosalicylate per mol glycophorin. This bound lithium diiodosalicylate cannot be removed by extensive washings with a variety of polar organic solvents nor by treatment with the detergent, sodium deoxycholate. Further, the hydrophobic peptide produced from glycophorin by trypsin digestion contained 3.4 mol lithium diiodosalicylate per mol peptide.  相似文献   

20.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号