首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

2.
Abstract. Phloem sap was collected from petioles of growing and fully expanded leaves of lupins exposed to 0–150 mol m−3 [NaCl]ext, for various periods of time. Sap bled from growing leaves only after the turgor of the shoot was raised by applying pneumatic pressure to the root. Increased pressure was also needed to obtain sap from fully expanded leaves of plants at high [NaCl]ext. Exposure to NaCl caused a rapid rise in the Na+ concentration in phloem sap to high levels. The Na+ concentration reached 20 mol m−3 within a day of exposure and reached a plateau of about 60 mol m−3 in plants at 50–150 mol m−3 [NaCl]ext, after a week. There was a slower, smaller increase in the Cl concentration. K+ concentrations in phloem sap were not affected by [NaCl]ext. Cl concentrations in phloem sap collected from growing leaves were similar to those from old leaves while Na+ concentrations were somewhat increased, suggesting that there was no reduction in the salt content of the phloem sap while it flowed within the shoot to the apex. Calculations of ion fluxes in xylem and phloem sap indicated that Na+ and Cl fluxes in the phloem from leaves of plants at high NaCl could be equal to those in the xylem. This prediction was borne out by observations that Na+ and Cl concentrations in recently expanded leaves remained constant.  相似文献   

3.
Salt stress in cultured rice cells: effects of proline and abscisic acid   总被引:4,自引:0,他引:4  
Abstract. The presence of 1 and 10 mol m−3 proline in media containing 100 and 200 mol m−3 of NaCl, had little effect on the growth of salt-adapted callus of rice. However, in such callus proline accumulation was stimulated by 10 mol m−3 proline in the presence of 100 mol m−3 NaCl. On the other hand, with 100 mol m−3 NaCl, both 1 and 10 mol m−3 proline significantly increased both the growth and proline content of salt-unadapted callus. On replacing NaCl with KCl (100 and 200 mol m−3), growth of saltadapted as well as unadapted callus was inhibited, but the presence of 10 mol m−3 proline had an ameliorating effect. Abscisic acid (ABA) supressed the growth of both salt-adapted and unadapted callus of rice in the absence of salt stress. ABA inhibited the growth of callus adapted to and grown in 100 and 200 mol m−3 of NaCl or when it was replaced by equimolar concentrations of KCl. Growth of 100 mol m−3 NaCl adapted cells was inhibited when they were transferred to a medium containing 200 mol m−3 of NaCl, but in the presence of ABA it was stimulated. ABA increased the growth of unadapted cells when subjected to different salts. Also, ABA accelerated the adaptation of cells exposed to salt but not to water deficits imposed by nonionic solutes.  相似文献   

4.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

5.
Abstract. Three parameters influencing the capacity for carbon accumulation, i.e. photosynthesis, respiration, and leaf extension growth, were studied in Beta vulgaris L. (sugar beet) cultured in nutrient solution containing 0.5 to 500 mol m−3 NaCl. Leaf extension growth was the parameter most sensitive to salinity: the initial rate of leaf extension and final leaf length each declined linearly with increase in external NaCl concentration. Photosynthetic O2 evolution of thin leaf slices did not decline until salinity levels reached 350 to 500 mol m−3 NaCl, while respiratory O2 consumption was not affected by salinity throughout the range. The results suggest that the influence of salinity on the capacity for carbon accumulation in B. vulgaris occurs primarily through reduction in the area of photosynthetic surface.  相似文献   

6.
Abstract. Kosteletzkya virginica (L.) Presl., a dicotyledonous halophyte native to brackish tidal marshes, was grown on nutrient solution containing 0. 85, 170 or 255 mol m-3 NaCl, and the effects of external salinity on shoot growth and ion content of individual leaves were studied in successive harvests. Growth was stimulated by 85 mol m-3 NaCl and was progressively reduced at the two higher salinities. Growth suppression at high salinity resulted principally from decreased leaf production and area, not from accelerated leaf death. As is characteristic of halophytic dicots. K. virginica accumulated inorganic ions in its leaves, particularly Na+ and K+. However, the Na+ concentration of individual leaves did not increase with time, but remained constant or even declined, seeming to be well-coordinated with changes in water content. A striking feature of the ion composition of salinized plants was the development of a dramatic gradient in sodium content, with Na+ partitioned away from the most actively growing leaves. Salt-treated plants exhibited a strong potassium affinity, with foliar K+ levels higher in salinized plants than unsalinized plants after an initial decrease. These results suggest that selective uptake and transport, foliar compartmentation of Na+ and K+ in opposite directions along the shoot axis, and the regulation of leaf salt loads over time to prevent build-up of toxic concentrations are whole-plant features which enable K. virginica to establish favourable K+-Na+ relations under saline conditions.  相似文献   

7.
Abstract. Growth rates and levels of minerals, Na+, K+, Mg++, Ca++, and water were measured in dicotyledonous halophytes grown along a salinity gradient from fresh water to 720 mol m−3 NaCl in a controlled environment greenhouse. Ten test species from the families Chenopodiaceae, Aizoaceae, and Batidaceae exhibited growth stimulation by 180 mol m−3 NaCl and were classified as euhalophytes. Ten others from the families Chenopodiaceae, Aizoaceae, Asteraceae, Brassicaceae, Polygonaceae, Boraginaceae, Malvaceae, and Plumbaginaceae showed their best growth on fresh water and were classified miohalophytes. Salt, and particularly sodium, accumulated in all halophytes but to a significantly greater extent among euhalophytes than miohalophytes. The water content of most species increased when grown on 180 mol m−3 NaCl compared to fresh water; but at higher salinities some of the species underwent dehydration. Dehydration of the succulent S. europaca was not coupled to a proportional decrease in growth. Water content and cation accumulation in euhalophytes appeared to be coordinated to produce a constant osmotic potential gradient within the shoot tissues relative to the external salinity. In contrast, miohalophytes did not appear to regulate osmotic potential as closely as euhalophytes.  相似文献   

8.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

9.
Previous results in our laboratory indicated that a reduced Mn concentration in the leaves of barley was highly correlated with the reduced relative growth and net assimilation rates of salt-stressed plants. If Mn deficiency limits the growth of salt-stressed barley, then increasing leaf Mn concentrations should increase growth. In the present study, the effect of supplemental Mn on the growth of salt-stressed barley ( Hordeum vulgare L. cv. CM 72) was tested to determine if a salinity-induced Mn deficiency was limiting growth. Plants were salinized with 125 mol m−3 NaCl and 9.6 mol m−3 CaCl2. Supplemental Mn was applied in 2 ways: 1) by increasing the Mn concentration in the solution culture and 2) by spraying Mn solutions directly onto the leaves. Growth was markedly inhibited at this salinity level. Dry matter production was increased 100% in salt-stressed plants treated with supplemental Mn to about 32% of the level of nonsalinized controls. The optimum solution culture concentration was 2.0 mmol m−3, and the optimum concentration applied to the leaves was 5.0 mol m−3. Supplemental Mn did not affect the growth of control plants. Further experiments showed that supplemental Mn increased Mn concentrations and uptake to the shoot. Supplemental Mn increased the relative growth rate of salt-stressed plants and this increase was attributed to an increase in the net assimilation rate; there were no significant effects on the leaf area ratio. Supplemental Mn also increased the net photosynthetic rate of salt-stressed plants. The data support the hypothesis that salinity induced a Mn deficiency in the shoot, which partially reduced photosynthetic rates and growth.  相似文献   

10.
Abstract. The starch concentration in mature leaves of the halophyte Suaeda maritima increased from 4.7 to 7.3 mg mg−1 chlorophyll when sodium chloride (680 mol M−3) was added to the solution in which the plants were grown. This effect of salinity on the starch: chlorophyll ratio was greater in young than in old leaves. Electron micrographs showed the starch to be in the chloroplasts and this was confirmed by measurements on isolated chloroplasts. Total phosphorus concentration (mg mg−1 chlorophyll) in leaves of all ages from plants of S. maritima decreased on salinization of the growth medium suggesting an inverse relationship between phosphorus and starch concentrations. However, although leaf starch concentration varied with leaf age, phosphorus concentration did not. The cause of starch accumulation in chloroplasts at salinities which are optimal for growth (340 mol m−3) remains unclear.  相似文献   

11.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

12.
Abstract. In a highly saline environment high rates of ion uptake are required to generate sufficient osmotic pressure to maintain the turgor that is needed for the continued growth of plants. We estimate the rates of net uptake of Cl and Na+ required by growing cells to sustain cell expansion at an external NaCl concentration of 500 mol m−3. We also estimate the ion fluxes required to regulate turgor of expanding and fully expanded cells during diurnal changes in transpiration. Passive fluxes could contribute significantly to osmotic regulation, but active fluxes are still essential and would consume a substantial amount of energy. We discuss whether a limitation to growth at high salinity would arise from lack of energy, or from insufficient capacity for ion uptake. There is insufficient evidence to choose between these possibilities.  相似文献   

13.
Physiological responses to salt stress in young umbu plants   总被引:2,自引:0,他引:2  
Soil salinity affects plant growth and development due to harmful ion effects and water stress caused by reduced osmotic potential in the soil solution. In order to evaluate the effects of salt stress in young umbu plants, research was performed in green house conditions at the Laboratory of Plant Physiology at Federal Rural University of Pernambuco, Brazil. Growth, stomatal behaviour, water relations, and both inorganic and organic solutes were studied aiming for a better understanding of the responses of umbu plants to increasing salinity. Plants were grown in washed sand with Hoagland and Arnon nutrient solution with 0, 25, 50, 75, and 100 mM NaCl. Growth, leaf water potential, transpiration, and diffusive resistance were evaluated. Na+, K+, Cl, soluble carbohydrates, and free amino acid contents were measured in several plant organs. Most variables were affected with salinity above 50 mM NaCl showing decreases in: number of leaves, plant height, stems diameter, and dry masses, and increases in root-to-shoot ratio. Reductions in ψpd were observed in plants grown under 75 and 100 mM NaCl. All salt levels above zero increased Na+ and Cl contents in leaves. However, K+ content was not affected. Na+ and Cl in stems and roots reached saturation in treatments above 50 mM NaCl. Organic solute accumulation in response to salt stress was not observed in umbu plants. These results suggest that umbu plants tolerate salt levels up to 50 mM NaCl without showing significant physio-morphological alterations.  相似文献   

14.
Abstract. Seedlings of Phaseolus vulgaris were exposed to solutions containing Cd2+ in the range 0 to 1 molm−3. Ethylene formation started following 3 h of exposure to 10−2, 10−1 and 1 mol m−3 Cd2+, peaked at 18 h and returned to a relatively low rate after 24 h. Cadmium-induced ethylene formation depended on the formation of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminoethoxyvinylglycine (AVG, 0.1 mol m−3) inhibited ACC accumulation and ethylene production during exposure to 0.2 mol m−3 Cd2+.
Activity of soluble and ionically-bound peroxidase increased after 18 h of exposure to Cd2+ concentrations above 10−3 mol m−3 due to an increase in activity of cathodic isoperoxidases. Stimulation of soluble and ionically-bound peroxidase by 0.2 mol m−3 Cd2+ was reduced in the presence of 0.1 mol m−3 AVG.
Accumulation of soluble and insoluble ('ligninlike') phenolics was found in plants exposed to Cd2+ (10−2 mol m−3 or above) in the presence or absence of AVG. Deposition of insoluble (autofluorescing) material occurred in cell walls around vessels and was associated with reduced expansion and water content of leaves.  相似文献   

15.
The effects of high salinity (up to 400 m M NaCl) on photosystem II (PSII) photochemistry, photoinhibition and the xanthophyll cycle were investigated in the halophyte Artimisia anethifolia grown under outdoor conditions. In order to examine the changes in PSII photochemistry, photoinhibition, thermal dissipation associated with the xanthophyll cycle in salt-acclimated plants, the experiments were conducted at midday on a clear day (maximal irradiance 1500 μmol m−1 s−1) and on a cloudy day (maximal irradiance 700 μmol m−1 s−1), respectively. With increasing salt concentration, the accumulation of sodium and chloride in leaves increased considerably while the relative growth rate and CO2 assimilation rate decreased significantly. Salinity induced no effects on PSII photochemistry, thermal energy dissipation, and the contents of the xanthophyll cycle pigments either on a clear day or on a cloudy day. However, when compared with those on a cloudy day, PSII photochemistry decreased and thermal energy dissipation increased significantly in both control and salt-acclimated plants on a clear day. The levels of zeaxanthin and antheraxanthin at the expense of violaxanthin were higher on a clear day than on a cloudy day. The results suggest that photoinhibition and the xanthophyll cycle were not induced by high salinity but by high light only in A. anethifolia plants. The results also suggest that A. anethifolia showed high resistance not only to high salinity, but also to photoinhibition even when it was treated with high salinity and exposed to full sunlight.  相似文献   

16.
17.
Germination and seedling growth of cotton: salinity-calcium interactions   总被引:8,自引:2,他引:6  
Abstract. The effects of NaCl salinity on germination and early seedling growth of cotton were studied. Germination was both delayed and reduced by 200 mol m−3 NaCl in the presence of a complete nutrient medium. Seedlings, 7–9 d old, were greatly reduced in fresh weight by salinity. The addition of supplemental Ca2+ (10 mol m−3 as SO42− or Cl) to the medium did not improve germination but, to a large degree, offset the reduction in root growth caused by NaCl. Roots growing in the high salt medium without supplemental Ca2+ appeared infected by microbes. The cation specificity of the beneficial Ca2+ effect on growth was ascertained by testing additions of MgSO4 or KCl to the NaCl treatments. The contents of K4 and Ca2+ were reduced in both roots and shoots by the NaCl treatments. Supplemental Ca2+ partially offset this effect for K4 in the roots and for Ca2+ in both roots and shoots. Sodium contents were not affected by the supplemental Ca2+. It is concluded that the beneficial effect of high Ca2+ concentrations on root growth of cotton seedlings in a saline environment may be due to maintenance of K/Na-selectivity and adequate Ca status in the root.  相似文献   

18.
以盐碱荒漠草甸药用植物胀果甘草(Glycyrrhiza inflata)为材料, 采用水培法研究了盐处理(50、100、200、300 mmol·L-1NaCl) 28天后幼苗株高、生物量、含水量、根粗、甘草酸含量和不同器官的离子含量及离子的选择吸收、运输能力, 并对丙二醛、脯氨酸含量进行测定, 以确定其耐盐范围及耐盐方式。结果表明, 低盐浓度对胀果甘草幼苗生长无显著影响, 只有较高盐浓度(≥200 mmol·L-1 NaCl)使幼苗总生物量、株高、甘草酸含量显著降低; 根据耐盐系数与盐浓度的拟合方程, 确定适宜幼苗生长的盐浓度范围为0-278.17 mmol·L-1。随盐浓度上升, 植株选择性吸收K+、Ca2+、Mg2+, 而抑制Na+进入体内, 幼苗对进入植株体内的Na+在不同盐浓度下采取了不同的分配策略, 低盐浓度下(0-100 mmol·L-1), 植株体内Na+主要积累在根中, 避免了叶中Na+的过多积累, 其盐适应机制以耐盐方式为主; 高盐浓度下(≥200 mmol·L-1 NaCl), Na+主要积累在下部叶, 并通过叶片脱落的方式带走体内的盐分, 其盐适应机制以避盐方式为主。盐胁迫下, 幼苗能促进K+而抑制Na+向上部叶的运输, 使上部叶拒Na喜K, 维持了较高的K+/Na+比值, 有利于幼苗生长; 同时, 地下根系能通过积累Ca2+、Mg2+和合成脯氨酸、甘草酸, 以提高渗透调节能力, 缓解Na+毒害, 使根的生长不受影响, 有利于保证幼苗在盐环境中吸收维持生长的必要养分, 这是胀果甘草幼苗具有较强耐盐性的原因。以上结果说明, 胀果甘草幼苗通过对盐离子的吸收和运输调控、离子区域化和渗透调节, 以耐盐和避盐两种方式适应盐碱荒漠环境。  相似文献   

19.
Water (H15O) translocation from the roots to the top of rice plants ( Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H15O flow was activated 8 min after plants were exposed to bright light (1 500 μmol m−2 s−1). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 μmol m−2 s−1), H15O flow was activated more slowly, and a higher translocation rate of H15O was observed in the same low light at the end of the next dark period. NaCl (80 m M ) and methylmercury (1 m M ) directly suppressed absorption of H15O by the roots, while methionine sulfoximine (1 m M ), abscisic acid (10 μ M ) and carbonyl cyanide m -chlorophenylhydrazone (10 m M ) were transported to the leaves and enhanced stomatal closure, reducing H15O translocation.  相似文献   

20.
The response of Suaeda aegyptiaca (Hasselq.) Zoh. to various salinity treatments was tested in sand culture. Growth was promoted by NaCl and by Na2SO4 at all tested concentrations, but not by KCl. The effect of NaCl on growth was stronger than that of Na2SO4 and it increased gradually up to a 125 eq. m−3 optimum. Ion uptake was also affected by the different salts. Cl was taken up in similar quantities from KCl and from NaCl solutions and the content of the respective cations was also similar to one another. The presence of Na+ in the medium lowered the content of K+ in the plants and at the same time increased growth by as much as 900%. Transpiration was reduced and water use efficiency increased by Na+-salts. Highest water use efficiency was exhibited by plants which were treated with 125 eq. m−3 NaCl. It is concluded that Na+ at the macronutrient level has a specific promotive effect on the physiological processes of S. aegyptiaca. This effect is not due to replacement of K+ by Na+; neither can it be achieved by increasing the K+ concentration. Cl has an additional positive effect on growth of S. aegyptiaca. This effect is only expressed in the presence of Na+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号