首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

2.
The modulatory role of dietary vitamin A on the carcinogen metabolizing enzymes was studied in masheri extract and benzo[a]pyrene-treated rats. Weanling male Sprague-Dawley rats were fed vitamin A deficient (SR-) and vitamin A sufficient (SR+) semisynthetic diets for 12 weeks. ME/B[a]P treatment significantly increased the phase I activating enzymes in both SR- and SR+ groups. However, a higher percentage increase in enzyme activities was observed in both liver and lung of the SR- animals compared to the SR+ groups. Glutathione content and activity of glutathione S-transferase were decreased in both liver and lung of SR- animals on treatment with either ME or B[a]P. In the SR+ group, an increase in GSH content and GST activity was observed following the ME/B[a]P treatment. The hepatic pool of vitamin A was depleted while that of vitamin C was increased after ME or B[a]P treatment in both SR- and SR+ groups.  相似文献   

3.
The effects of garlic and neem leaf extracts on lipid peroxidation and antioxidant status during administration of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a carcinogenic nitrosamine were evaluated in male Wistar rats. Extracts of garlic and neem leaf were administered orally for five consecutive days before intraperitoneal injection of MNNG. Enhanced lipid peroxidation in the stomach, liver and circulation of MNNG-treated rats was accompanied by a significant decrease in glutathione (GSH) and the activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST) and gamma glutamyl transpeptidase (GGT). Administration of garlic and neem leaf extracts significantly decreased the formation of lipid peroxides and enhanced the levels of antioxidants and detoxifying enzymes in stomach, the primary target organ for MNNG, as well as in the liver and circulation. The results of the present study suggest that garlic and neem may exert their protective effects by modulating lipid peroxidation and enhancing the levels of GSH and GSH-dependent enzymes.  相似文献   

4.
In the present study, the influence of subchronic effects of two plant growth regulators (PGRs) [Abcisic acid (ABA) and Gibberellic acid (GA3)] on antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (malondialdehyde = MDA) in various tissues of the rat were investigated during treatment as a drinking water model. 75 ppm of ABA and GA3 in drinking water were continuously administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days. The PGRs treatments caused different effects on the antioxidant defense systems and MDA content of dosed rats compared to controls. The lipid peroxidation end product MDA significantly increased in the lungs, heart and kidney of rats treated with GA3 without significant change in the spleen. ABA caused also a significant increase in MDA content in the spleen, lungs, heart and kidney. The GSH levels were significantly depleted in the spleen, lungs and stomach of rats treated with ABA without any change in the tissues of rats treated with GA3 except the kidney where it increased. Antioxidant enzyme activities such as SOD significantly increased in the lungs and stomach and decreased in the spleen and heart tissues of rats treated with GA3. Meanwhile, SOD significantly decreased in the spleen, heart and kidney and increased in the lungs of rats treated with ABA. While CAT activity significantly decreased in the lungs of rats treated with GA3, a significant increase occurred in the heart of rats treated with both PGRs. On the other hand, the ancillary enzyme GR activity in the tissues were either significantly depleted or not changed with PGRs treatment. The drug metabolizing enzyme GST activity significantly decreased in the lungs of rats treated with ABA but increased in the stomach of rats treated with both PGRs. As a conclusion, the rats resisted oxidative stress via the antioxidant mechanism. But the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. This data, along with changes, suggests that PGRs produced substantial systemic organ toxicity in the spleen, lungs, stomach, heart and kidney during a 50-day period of subchronic exposure.  相似文献   

5.
This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague-Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure.  相似文献   

6.
The aim of this study was to investigate mechanisms responsible for the inhibition of biliary glutathione efflux in rats with secondary biliary cirrhosis. Rats were studied after bile duct obstruction for 28 days. The biliary secretion of reduced glutathione (GSH), oxidised glutathione (GSSG) and cysteine were completely inhibited in biliary obstructed rats. Hepatic gamma glutamyltranspeptidase (gamma-GT) activity increased significantly, but following its inhibition by acivicin administration GSH, GSSG and cysteine were still absent in bile. Biliary obstruction resulted in a significant increase of the permeability of the paracellular pathway, as shown by the higher bile/plasma ratio and hepatic clearance of [14C]sucrose. GSH and GSSG were, however, significantly lower in the carotid artery and hepatic vein of obstructed animals and the arteriovenous difference across the liver was reduced. The concentration of GSH was significantly reduced and that of GSSG increased in the liver of obstructed rats. Biliary obstruction induced an increase in the hepatic concentration of cysteine and an inhibition of both gamma glutamylcysteine synthetase and methionine adenosyl transferase activities. Dichlorofluorescein (DCF) and the GSSG/GSH ratio and thiobarbituric acid reactive substances (TBARS) concentration, markers of reactive oxygen species production and lipid peroxidation, respectively, were significantly increased. Our data indicate that increased degradation or blood reflux of glutathione do not participate in the disruption of its secretion into bile and support the view that impairment of glutathione synthesis and oxidative stress could contribute to the decline in biliary glutathione output.  相似文献   

7.
In the present study, the influence of subchronic effects of two plant growth regulators (PGRs) [Abcisic acid (ABA) and Gibberellic acid (GA3)] on antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (malondialdehyde = MDA) in various tissues of the rat were investigated during treatment as a drinking water model. 75 ppm of ABA and GA3 in drinking water were continuously administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days. The PGRs treatments caused different effects on the antioxidant defense systems and MDA content of dosed rats compared to controls. The lipid peroxidation end product MDA significantly increased in the lungs, heart and kidney of rats treated with GA3 without significant change in the spleen. ABA caused also a significant increase in MDA content in the spleen, lungs, heart and kidney. The GSH levels were significantly depleted in the spleen, lungs and stomach of rats treated with ABA without any change in the tissues of rats treated with GA3 except the kidney where it increased. Antioxidant enzyme activities such as SOD significantly increased in the lungs and stomach and decreased in the spleen and heart tissues of rats treated with GA3. Meanwhile, SOD significantly decreased in the spleen, heart and kidney and increased in the lungs of rats treated with ABA. While CAT activity significantly decreased in the lungs of rats treated with GA3, a significant increase occurred in the heart of rats treated with both PGRs. On the other hand, the ancillary enzyme GR activity in the tissues were either significantly depleted or not changed with PGRs treatment. The drug metabolizing enzyme GST activity significantly decreased in the lungs of rats treated with ABA but increased in the stomach of rats treated with both PGRs.

As a conclusion, the rats resisted oxidative stress via the antioxidant mechanism. But the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. This data, along with changes, suggests that PGRs produced substantial systemic organ toxicity in the spleen, lungs, stomach, heart and kidney during a 50-day period of subchronic exposure.  相似文献   

8.
The present study investigated the hepatoprotective role of zinc in attenuating the toxicity induced by chlorpyrifos in rat liver. Male Sprague-Dawley (SD) rats received either oral chlorpyrifos (13.5mg/kg body weight), zinc alone (227mg/l in drinking water) or combined chlorpyrifos plus zinc treatment for a total duration of 8 weeks. The effects of these treatments were studied on various parameters in rat liver, including lipid peroxidation, antioxidant enzymes, levels of metallothionein (MT) and hepatic histoarchitecture. Chlorpyrifos treatment resulted in a significant increase in hepatic lipid peroxidation and activities of superoxide dismutase (SOD), glutathione peroxidase (G-Px) and glutathione reductase (GR). On the contrary, chlorpyrifos intoxication caused a significant inhibition in the levels of reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST) activities. However, zinc treatment to chlorpyrifos-intoxicated animals normalized the otherwise raised levels of lipid peroxidation to within normal limits. Moreover, zinc treatment to these animals resulted in an elevation in the levels of GSH, catalase and GST, as well as a significant decrease in the levels of SOD. Levels of MT were also found to be depressed in chlorpyrifos-treated animals, but tended to increase following co-administration of zinc. Additionally, chlorpyrifos-treated animals demonstrated increased vacuolization, necrosis and ballooning of the hepatocytes and dilatation of sinusoids as well as increase in the number of binucleated cells. However, zinc administration to chlorpyrifos-treated animals resulted in overall improvement in the hepatic histoarchitecture, emphasizing the protective potential of zinc. Hence, the present study suggests the protective potential of zinc in alleviating the hepatic toxicity induced by chlorpyrifos.  相似文献   

9.
Melatonin (MEL) displays antioxidant and free radical scavenger properties. In the present study, the effect of MEL on the oxidative stress induced by ochratoxin A (OTA) administration in rats was investigated. Four groups of 15 rats each were used: controls, MEL-treated rats (5 mg/kg body mass), OTA-treated rats (250 μg/kg) and MEL+OTA-treated rats. After 4 weeks of treatment, the levels of malondialdehyde (MDA), a lipid peroxidation product (LPO) were measured in serum and homogenates of liver and kidney. Also, the levels of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) in liver and kidney were determined. In OTA-treated rats, the levels of LPO in serum and in both liver and kidney were significantly increased compared to levels in controls. Concomitantly, the levels of GSH and enzyme activities of SOD, CAT, GSPx and GR in both liver and kidney were significantly decreased in comparison with controls. In rats received MEL+OTA, the changes in the levels of LPO in serum and in liver and kidney were not statistically significant compared to controls. Concomitantly, the levels of GSPx, GR and GST activities in both liver and kidney tissues were significantly increased in comparison with controls. Similar increases in GSPx, GR and GST activities were also observed in MEL-treated rats when compared with controls. In conclusion, the oxidative stress may be a major mechanism for the toxicity of OTA. MEL has a protective effect against OTA toxicity through an inhibition of the oxidative damage and stimulation of GST activities. Thus, clinical application of melatonin as therapy should be considered in cases of ochratoxicosis.  相似文献   

10.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

11.
1,2-dimethylhydrazine (DMH) is a colon carcinogen which undergoes oxidative metabolism in the liver. We have investigated the modulatory effect of fenugreek seeds (a spice) on colon tumor incidence as well as hepatic lipid peroxidation (LPO) and antioxidant status during DMH-induced colon carcinogenesis in male Wistar rats. In DMH treated rats, 100% colon tumor incidence was accompanied by enhanced LPO and a decrease in reduced glutathione (GSH) content as well as a fall in glutathione peroxidase (GPx), glutathione S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) activities. Inclusion of fenugreek seed powder in the diet of DMH treated rats reduced the colon tumor incidence to 16.6%, decreased the LPO and increased the activities of GPx, GST, SOD and CAT in the liver. We report that fenugreek modulates DMH-induced hepatic oxidative stressduring colon cancer  相似文献   

12.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

13.
Changes in microsomal drug oxidizing enzymes, microsomal lipids, hepatic glutathione (GSH), glutathione S-trans-ferase (GST) and malondialdehyde (MDA) formation following administration of rats with therapeutic doses of three structurally related antimalarial drugs, amodiaquine (AQ), mefloquine (MQ) and halofantrine (HF) were investigated. There was a significant decrease in the activities of aniline hydroxylase, p-nitroanisole O-demethylase and pentoxyresorufin O-dealkylase in AQ, MQ and HF treated rats. AQ elicited the greatest effect with 50, 37 and 67% reductions in the activities of aniline hydroxylase, p-nitroanisole O-demethylase and pentoxyresorufin O-dealkylase, respectively. All the drugs prolonged hexobarbital-sleeping time to varying extents. The three drugs increased significantly the cholesterol per phospholipid ratio. AQ, MQ and HF decreased significantly the GSH level, GST activity and increased the formation of MDA. The results indicate that the alterations in hepatic microsomal components and lipid peroxidation caused by the antimalarials are related to the structural differences in the compounds.  相似文献   

14.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

15.
In previous studies, we reported that fasting/refeeding has a role in sustaining the initiation of liver cancer by a subnecrogenic (noninitiating) dose of diethylnitrosamine (DENA). This research investigated whether the metabolic alterations imposed by fasting/refeeding provide an imbalance between the generation of carcinogenic molecules and the scavenger defense mechanisms in rat liver. Metabolism of DENA, levels of reduced glutathione (GSH) and GSH transferase (GST) activity, as well as basal and stimulated malondialdehyde (MDA) production, were examined. Rats fasted for 4 days showed a decrease in the liver levels of GSH, GST activity, monounsaturated fatty acids and % of labeled nuclei. After 1 day of refeeding, at which point DENA was administered, the levels of GSH recovered, GST activity remained below control values, basal and stimulated MDA production and content of total polyunsaturated fatty acids in liver phospholipids decreased. One day after DENA treatment, MDA production further decreased, although the % of labeled nuclei increased. No significant changes in the content of arachidonic acid, the main target of peroxidation, were observed at any time. The results indicated that the induction of the hepatocellular carcinoma was associated with a depression of GST activity and lipid peroxidation when rats were given 20 mg/kg of DENA after 1 day of refeeding after 4-day fasting.  相似文献   

16.
The effect of Dipel (D), a Bacillus thuringiensis-based bioinsecticide, on hepatic antioxidant enzyme activities and lipid peroxidation in rat liver was investigated. Administration of D in a dose of 1 mg/100 g body mass for 4 successive days increased the activities of glutathione peroxidase (GPx), glutathione reductase (GR) and the level of malondialdehyde (MDA) in rat hepatocytes. The activity of superoxide dismutase (SOD) and glutathione (GSH) level were decreased. Administration of D in rats pretreated with alpha-tocopherol (alphaT) or acetylsalicylic acid (ASA) decreased the activities of GPx, GR and MDA levels, while the GSH level was increased compared with rats treated with D alone. The SOD activity was increased in rats pretreated with alphaT before D, but decreased on pretreatment with ASA, compared with rats treated with D alone. The results indicated that D induced oxidative stress in rat liver that has been protected by prior administration of alphaT or ASA.  相似文献   

17.
The streptozotocin-induced short-term (2 week) diabetic rats showed an increase in susceptibility to carbon tetrachloride (CCl4)-induced hepatocellular damage. This diabetes-induced change was associated with a marked impairment in the hepatic glutathione antioxidant/detoxification response to CCl4 challenge, as indicated by the abrogation of the increases in hepatic reduced glutathione (GSH) level, glucose-6-phosphate dehydrogenase and microsomal glutathione S-transferases (GST) activities upon challenge with increasing doses of CCl4. While the hepatic GSH level was increased in diabetic rats, the hepatic mitochondrial GSH level and Se-glutathione peroxidase activity were significantly reduced. Insulin treatment could reverse most of the biochemical alterations induced by diabetes. Both insulin and schisandrin B (Sch B) pretreatments protected against the CCl4 hepatotoxicity in diabetic rats. The hepatoprotection was associated with improvement in hepatic glutathione redox status in both cytosolic and mitochondrial compartments, as well as the increases in hepatic ascorbic acid level and microsomal GST activity. The ensemble of results suggests that the diabetes-induced impairment in hepatic mitochondrial glutathione redox status may at least in part be attributed to the enhanced susceptibility to CCl4 hepatotoxicity. Sch B may be a useful hepatoprotective agent against xenobiotics-induced toxicity under the diabetic conditions. (Mol Cell Biochem 175: 225–232, 1997)  相似文献   

18.
Induction of cytochrome P450 enzymes by exposure to polycyclic aromatic hydrocarbons (PAH) can result in both decreased or increased PAH adduct levels. The lung is a main target site for PAH-carcinogenesis. By HPLC determination of B[ a]P-r-7, t-8-dihydrodiol, t-9, 10-epoxide (BPDE-I)-DNA adducts in rat, the level of the ultimate carcinogenic B[a]P-metabolite was higher in lungs than in liver. However, measured by immunoassay, the total benzo[a]pyrene (B[a]P)-DNA adduct levels were higher in liver than in lungs. Induction of CYP1A1 in vivo in rat by repeated i.p. doses of methylcholanthrene (MC) prior to a single dose of B[a]P resulted in a 2.4 times increase in CYP1A1 activity in liver tissue and 1.5 times higher levelsof total B[a]P-DNA adducts in lung and liver compared with controls which only received B[a]P. Increased levels of BPDE-I-DNA adducts were significantly correlated to increased CYP1A1 activity in induced lung tissue but not in liver. The times to reach maximum adduct levels were similar for both controls and MC-induced rats in both lung and liver,and plasma albumin. The BPDE-I-albumin adducts reached a maximum level around 1 day after B[a]P exposure and could not be used as a reliable marker of the short term PAH exposure in this study.  相似文献   

19.
Induction of cytochrome P450 enzymes by exposure to polycyclic aromatic hydrocarbons (PAH) can result in both decreased or increased PAH adduct levels. The lung is a main target site for PAH-carcinogenesis. By HPLC determination of B [a]P-r-7, t-8-dihydrodiol, t-9, 10-epoxide (BPDE-I)-DNA adducts in rat, the level of the ultimate carcinogenic B[a]P-metabolite was higher in lungs than in liver. However, measured by immunoassay, the total benzo[a]pyrene (B[a]P)-DNA adduct levels were higher in liver than in lungs. Induction of CYP1A1 in vivo in rat by repeated i.p. doses of methylcholanthrene (MC) prior to a single dose of B[a]P resulted in a 2.4 times increase in CYP1A1 activity in liver tissue and 1.5 times higher levelsof total B[a]P-DNA adducts in lung and liver compared with controls which only received B[a]P. Increased levels of BPDE-I-DNA adducts were significantly correlated to increased CYP1A1 activity in induced lung tissue but not in liver. The times to reach maximum adduct levels were similar for both controls and MC-induced rats in both lung and liver,and plasma albumin. The BPDE-I-albumin adducts reached a maximum level around 1 day after B[a]P exposure and could not be used as a reliable marker of the short term PAH exposure in this study.  相似文献   

20.
In the present study, we focused on the protective effect of Spirulina against 4-nitroquinoline-1-oxide (4NQO) induced hepato and nephrotoxicity in the experimental rats. The 4NQO administration resulted in increased levels of hepatic and renal markers [Alanine Transaminase (ALT), Aspartate Transaminase (AST), Lactate Dehydrogenase (LDH), urea, creatinine and uric acid] in the serum of experimental animals. It also increased the oxidative stress resulting in increased levels of the lipid peroxidation with a concomitant decline in the levels of non enzymic [reduced glutathione (GSH)] and enzymic antioxidants [(Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), and Glutathione-S-transferase (GST)] in both liver and kidney. Oral pretreatment with aqueous extract of Spirulina prevented 4NQO induced changes in the levels of hepatic and kidney diagnostic marker enzymes in the serum of experimental rats. It counteracted the 4NQO induced lipid peroxidation and maintained the hepatic and kidney antioxidant defense system at near normal in both liver and kidney. The antioxidant responsiveness mediated by Spirulina may be anticipated to have biological significance in eliminating reactive free radicals that may otherwise affect normal cell functioning and provide a scientific rationale for the use of Spirulina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号