首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Sen  G Talukder  A Sharma 《Cytobios》1985,42(166):87-91
Cytophotometric estimation of DNA values from human buccal mucosa and lymphocyte culture nuclei shows a difference related to different X chromosomal abnormalities, namely, del X, XO, XXX and XXY. The values in the buccal mucosa in all cases except XXX were similar to the normal XX and XY. In lymphocytes nuclei, however, a steady increase in the DNA content at a significant level could be related to an increase in the number of X chromosomes. The similarity in the DNA values of normal XX and XY controls may be attributed to asynchrony in the replication patterns of X and Y chromosomes.  相似文献   

2.
We have analyzed patterns of DNA replication in X chromosomes from diploid cultured human fibroblasts and from three triploid 69,XXY fibroblast strains, using BrdU--33258 Hoechst--Giemsa techniques. Both X chromosomes in each of these Barr body-negative triploid strains were early-replicating. The results of gene dosage studies using (1) a histochemical stain to measure X-linked glucose-6-phosphate dehydrogenase (G6PD) activity in single cells and (2) cellulose acetate electrophoresis of G6PD activity in cell extracts also indicated that both Xs in these strains were genetically active. When we compared the synchrony of X chromosome DNA replication kinetics both between cells and within cells containing multiple inactive Xs, a marked variability and asynchrony was observed for late-replicating X chromosomes. In a culture of 47,XXX fibroblasts administered an 8-h terminal pulse of dT after growth in BrdU-containing medium, asynchrony was detected between the two late-replicating Xs in approximately 70% of cells examined. No such asynchrony was observed between the two early-replicating Xs in similarly cultured 69,XXY cells; in the triploid strains, the two Xs were distinguished by asynchronous replication in only approximately 15% of cells. The striking variability in late X chromosome replication kinetics appears, then, to be a property unique to inactive Xs and is not inherent to all X chromosomes.  相似文献   

3.
Regional DNA replication kinetics in human X chromosomes have been analysed using BrdU-33258 Hoechst-Giemsa techniques in five cell types from human females: amniotic fluid cells, fetal and adult skin fibroblasts, and fetal and adult peripheral lymphocytes. In all cell types, the late-replicating X chromosome can be distinguished from its active, earlyreplicating homologue, and both the early and late X exhibit temporally and regionally characteristic internal sequences of DNA replication. The replication pattern of the early X in amniotic fluid cells and skin fibroblasts is similar to that of the early X in lymphocytes, although certain discrete regions are later-replicating in these monolayer tissue culture cells than are the corresponding regions in lymphocytes. However, DNA replication kinetics in late X chromosomes from amniotic fluid cells and skin fibroblasts are strikingly different from those observed in lymphocytes with respect both to the initiation and termination of DNA synthesis. The predominant late X pattern observed in 80–95% of lymphocytes, in which replication terminates in the long arm in bands Xq21 and Xq23, was never seen in amniotic fluid cells or skin fibroblasts. Instead, in these cell types, bands Xq25 and Xq27 are the last to complete DNA synthesis, while bands Xq21 and Xq23 are earlier-replicating; this pattern is similar to the alternative replication sequence observed in 5–20% of lymphocyte late X chromosomes. This replication sequence heterogeneity is consistent with the existence of tissue-specific influences on the control of DNA replication in human X chromosomes.  相似文献   

4.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

5.
In a case of complete hydatidiform mole with fetus the genetic origins were defined by the use of chromosomal polymorphisms. The fetus had a normal 46,XY karyotype with evidence of the presence of both maternal and paternal chromosomes. The mole was 46,XX and of androgenetic origin. There was no evidence of a maternal contribution, and duplication of paternal chromosomes was shown. In such atypical molar pregnancies examining genetic polymorphisms yields much more information than do sex chromosome studies and karyotyping, particularly in confirming the diagnosis and defining the origin and aetiology of the condition.  相似文献   

6.
Summary We documented a new case of chi 46,XX/46,XY true hermaphroditism substantiated by the evaluation of chromosomal heteromorphism in banded preparations. The patient, a 12-year-old Japanese boy with ambiguous external genitalia, was seen because of abnormal breast development. Surgical exploration showed the right gonad to be an ovotestis and the left gonad to be an ovary. Cytogenetic studies revealed cell admixtures of 46,XX and 46,XY karyotypes in peripheral lymphocytes, skin fibroblasts, and gonadal fibroblasts. From the pedigree studies, the paternal double genetic contributions were evidenced by the differences of sex chromosomes and the blood group types for the ABO and MNSs systems in the two cell lines of the patient. The maternal double genetic contributions were confirmed by the inheritance of Q-fluorescent markers on chromosomes 13 and 22 and by alleles for the Kidd blood group system.  相似文献   

7.
We report cytogenetic and molecular investigations performed in two cases of mosaic trisomy 8 combined with mosaic sex chromosome aneuploidy. In a 35-year-old female, presenting with short stature, gonadal dysgenesis, and a multiple congenital anomalies/mental retardation syndrome typical of trisomy 8, chromosome analysis from peripheral lymphocytes showed the presence of three cell lines, whose karyotypes were 45,X (59.2%), 46,X,+8 (1.2%), and 47,XX,+8 (39.6%), respectively. The same cell lines were found in a skin fibroblast culture, though in different proportions. The second patient, a 9-month-old male with multiple skeletal abnormalities, showed a 47,XY,+8 and a 47,XXY cell line in both peripheral lymphocytes (61.7% and 38.3%, respectively) and skin fibroblasts (92.8% and 7.2%, respectively). To determine the events underlying the origin of these complex karyotypes we performed Southern blot and polymerase chain reaction (PCR) analysis using polymorphic DNA markers from the X chromosome and from chromosome 8. Both supernumerary chromosomes 8, and, in case 2, the two X chromosomes, appeared to be identical, lacking detectable recombination events. We conclude that, in both cases, the most likely mechanism underlying the origin of the mosaic cell lines was formation of a normal zygote, followed by mitotic errors during early divisions.  相似文献   

8.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

9.
黑斑蛙的减数分裂研究   总被引:1,自引:0,他引:1  
本文研究了黑斑蛙的减数分裂,发现其性染色体所形成的性二价体主要呈末端与末端联接,浓缩期占79.6%,中期Ⅰ占75%,这进一步证明黑斑蛙确实存在XY型性别决定机制,这种XY型性染色体虽形态相同,但已发生了质的分化,可能是同型异质。黑斑蛙的性染色体并不形成性泡,少数二价体有中间交叉。  相似文献   

10.
11.
Summary In lymphocytes of a human female carrier of a balanced X;3 translocation, 46,X,t(X;3)(q28;q21), late replication of the structurally normal X chromosome only was previously described (de la Chapelle and Schröder 1973). We have now confirmed this finding using a fresh blood sample. Examining the chromosomes of this individual in fibroblasts we observed that either the normal X or the Xq+ chromosome could replicate late and show inactivity after fusion with heteroploid mouse cells. The replication patterns of chromosomes in human X;autosome translocations have so far almost exclusively been analyzed in lymphocytes. Our findings stress that results based on these cells are not representative for all cell types.  相似文献   

12.
Traditionally twins are classified as dizygous or fraternal and monozygous or identical (Hall Twinning, 362, 2003 and 735-743). We report a rare case of 46,XX/46,XY twins: Twin A presented with ambiguous genitalia and Twin B was a phenotypically normal male. These twins demonstrate a third, previously unreported mechanism for twinning. The twins underwent initial investigation with 17-hydroxyprogesterone and testosterone levels, pelvic ultrasound and diagnostic laparoscopy. Cytogenetic analysis was performed on peripheral blood cells and skin fibroblasts. Histological examination and Fluorescence in situ hybridization studies on touch imprints were performed on gonadal biopsies. DNA analysis using more than 6,000 DNA markers was performed on skin fibroblast samples from the twins and on peripheral blood samples from both parents. Twin A was determined to be a true hermaphrodite and Twin B an apparently normal male. Both twins had a 46,XX/46,XY chromosome complement in peripheral lymphocytes, skin fibroblasts, and gonadal biopsies. The proportion of XX to XY cells varied between the twins and the tissues evaluated. Most significantly the twins shared 100% of maternal alleles and approximately 50% of paternal alleles in DNA analysis of skin fibroblasts. The twins are chimeric and share a single genetic contribution from their mother but have two genetic contributions from their father thus supporting the existence of a third, previously unreported type of twinning.  相似文献   

13.
Eleven Y-specific DNA probes hybridizing with DNA from one or more 46,XX males were isolated from a recombinant phage DNA library constructed from flow sorted human Y chromosomes. Two probes hybridized with DNA from nine out of eleven, i.e. greater than 80% of these 46,XX males. The relative frequency of hybridization of the probes in the 46,XX males and in a 46,X,dic(Y) female, together with in situ hybridization data, allowed mapping of the probes on Yp in relation to a putative testis determining locus. Several of those probes were also absent in a 46,XY female, further refining a model for ordering the probes on Yp. The DNA of one XX male hybridized both with probes from Yp and probes from proximal Yq (excluding the pericentral region). This suggests that complex translocations may occur into the DNA of 46,XX males that involve not only parts of Yp but also parts of Yq.  相似文献   

14.
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the "four core genotypes," to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism.  相似文献   

15.
16种罕见的人类染色体异常核型报告   总被引:1,自引:0,他引:1  
通过对患有闭经、自发流产、死胎、死产等患者外周血淋巴细胞染色体检查,发现16种新的罕见人类染色体异常核型,它们是46,XY,t(6;11)(q25;p15);46,XY,inv(3)(p25;q29);46,XY,t(7;18)(q10;p10);46,X,t(X;13)(q24;q14);46,XY,t(4;7)(q33;q22);46,XY,t(8;15)(q24;q15);46,XY,t(2;17)(q33;q25);46,XX,t(4;7)(q34;q11);46,XX,t(1;3)(p36;p23);46,XX,t(4;6)(q35;p11);46,X,inv(X)(q22;q28);46,XX,t(7;10)(p11;q26);46,XX,t(3;6)(p21;q23);46,XX,t(8;16)(p21;p13);46,XX,t(8;9)(q21;q34);46,XY,t(17;22)(q21;q11)。描述了患者的临床表现,并对生殖异常患者染色体畸变与其表型效应关系进行探讨。Abstract:By examining the lymphocytic chromosomes of peripheral blood from patients with amenorrhea,spontaneous abortion and stillbirth history, .the 16 rare species of human chromosomal abnormal karyotypes were discovered. They wre 46,XY,t(6;11)(q25;p15);46,XY,inv(3)(p25;q29);46,XY,t(7;18)(q10;p10);46,X,t(X;13)(q24;q14);46,XY,t(4;7)(q33;q22);46,XY,t(8;15)(q24;q15);46,XY,t(2;17)(q33;q25);46,XX,t(4;7)(q34;q11);46,XX,t(1;3)(p36;p23);46,XX,t(4;6)(q35;p11);46,X,inv(X)(q22;q28);46,XX,t(7;10)(p11;q26);46,XX,t(3;6)(p21;q23);46,XX,t(8;16)(p21;p13);46,XX,t(8;9)(q21;q34);46,XY,t(17;22)(q21;q11). Their clinical situation were described. Discussion on the relationship between the chromosomal aberrations and phenotype effect indicates the importance of chromosome karyotyping in patients with abnormal reproductive history.  相似文献   

16.
In situ hybridization of Drosophila melanogaster somatic chromosomes has been used to demonstrate the near exact correspondence between the location of highly repetitious DNA and classically defined constitutive heterochromatin. The Y chromosome, in particular, is heavily labeled even by cRNA transcribed from female (XX) DNA templates (i.e., DNA from female Drosophila with 2 Xs and 2 sets of autosomes). This observation confirms earlier reports that the Y chromosome contains repeated DNA sequences that are shared by other chromosomes. In grain counting experiments the Y chromosome shows significantly heavier label than any other chromosome when hybridized with cRNA from XY DNA templates (i.e., DNA from male Drosophila with 1 X and 1 Y plus 2 sets of autosomes). However, the preferential labeling of the Y is abolished if the cRNA is derived from XX DNA. We interpret these results as indicating the presence of a class of Y chromosome specific repeated DNA in D. melanogaster. The relative inefficiency of the X chromosome in binding cRNA from XY and XYY DNA templates, coupled with its ability to bind XX derived cRNA, may also indicate the presence of an X chromosome specific repeated DNA.  相似文献   

17.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Meiotic segregation of gonosomes from a 46,XY/47,XXY male was analysed by a three-colour fluorescence in situ hybridisation (FISH) procedure. This method allows the identification of hyperhaploid spermatozoa (with 24 chromosomes), diploid spermatozoa (with 46 chromosomes) and their meiotic origin (meiosis I or 11). Alpha satellite DNA probes specific for chromosomes X, Y and 1 were observed on 27,097 sperm nuclei. The proportions of X-and Y -bearing sperm were estimated to 52.78% and 43.88%, respectively. Disomy (24,XX, 24,YY, 24,X or Y,+1) and diploidy (46,XX, 46,YY, 46,XY) frequencies were close to those obtained from control sperm, whereas the frequency of hyperhaploid 24,XY spermatozoa (2.09%) was significantly increased compared with controls (0.36%). These results support the hypothesis that a few 47,XXY germ cells would be able to complete meiosis and to produce mature spermatozoa.  相似文献   

19.
The allocyclic X chromosome in early female mouse embryos undergoes DNA replication either late or early in the S phase. Earlier studies indicated that the early-replicating X chromosome is restricted to the trophectoderm and primitive endoderm cell lineages in which the allocyclic X is almost exclusively paternal in origin. There has been, however, no compelling evidence for the genetic inactivity of the early-replicating X chromosome and a shift from early to late replication or vice versa. The present study employing a combination of 3H-thymidine autoradiography and BrdU labeling-acridine orange fluorescence staining in day-6 female mouse embryos found that the early-replicating X chromosome can change directly into a late-replicating one. The activity state of the early-replicating X chromosome was examined by electrophoretic determination of the X linked enzyme, phosphoglycerate kinase (PGK-1), in tissues isolated from 6.0-day and day-8.5 Pgk-1a/Pgk-1b embryos. Only the maternally derived Pgk-1 allele was expressed in the proximal endoderm and extraembryonic ectoderm of 6.0-day and the chorion of 8.5-day embryos. Thus, the early-replicating, paternally derived X chromosome found in about 70%-80% of the cells in these tissues seems to be repressed like the late-replicating one.  相似文献   

20.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号