首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In plants, the mechanism by which RNA can induce de novo cytosine methylation of homologous DNA is poorly understood. Cytosines in all sequence contexts become modified in response to RNA signals. Recent work has implicated the de novo DNA methyltransferases (DMTases), DRM1 and DRM2, in establishing RNA-directed methylation of the constitutive nopaline synthase promoter, as well as the DMTase MET1 and the putative histone deacetylase HDA6 in maintaining or enhancing CpG methylation induced by RNA. Despite the identification of enzymes that catalyze epigenetic modifications in response to RNA signals, it is unclear how RNA targets DNA for methylation. A screen for mutants defective in RNA-directed DNA methylation identified a novel putative chromatin-remodeling protein, DRD1. This protein belongs to a previously undefined, plant-specific subfamily of SWI2/SNF2-like proteins most similar to the RAD54/ATRX subfamily. In drd1 mutants, RNA-induced non-CpG methylation is almost eliminated at a target promoter, resulting in reactivation, whereas methylation of centromeric and rDNA repeats is unaffected. Thus, unlike the SNF2-like proteins DDM1/Lsh1 and ATRX, which regulate methylation of repetitive sequences, DRD1 is not a global regulator of cytosine methylation. DRD1 is the first SNF2-like protein implicated in an RNA-guided, epigenetic modification of the genome.  相似文献   

2.
RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment.  相似文献   

3.
4.
Tandem repeat sequences are frequently associated with gene silencing phenomena. The Arabidopsis thaliana FWA gene contains two tandem repeats and is an efficient target for RNA-directed de novo DNA methylation when it is transformed into plants. We showed that the FWA tandem repeats are necessary and sufficient for de novo DNA methylation and that repeated character rather than intrinsic sequence is likely important. Endogenous FWA can adopt either of two stable epigenetic states: methylated and silenced or unmethylated and active. Surprisingly, we found small interfering RNAs (siRNAs) associated with FWA in both states. Despite this, only the methylated form of endogenous FWA could recruit further RNA-directed DNA methylation or cause efficient de novo methylation of transgenic FWA. This suggests that RNA-directed DNA methylation occurs in two steps: first, the initial recruitment of the siRNA-producing machinery, and second, siRNA-directed DNA methylation either in cis or in trans. The efficiency of this second step varies depending on the nature of the siRNA-producing locus, and at some loci, it may require pre-existing chromatin modifications such as DNA methylation itself. Enhancement of RNA-directed DNA methylation by pre-existing DNA methylation could create a self-reinforcing system to enhance the stability of silencing. Tandem repeats throughout the Arabidopsis genome produce siRNAs, suggesting that repeat acquisition may be a general mechanism for the evolution of gene silencing.  相似文献   

5.
RNA-directed DNA methylation   总被引:29,自引:0,他引:29  
  相似文献   

6.
7.
DNA methylation is an evolutionarily conserved epigenetic modification that is critical for gene silencing and the maintenance of genome integrity. In Arabidopsis thaliana, the de novo DNA methyltransferase, domains rearranged methyltransferase 2 (DRM2), is targeted to specific genomic loci by 24 nt small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). Biogenesis of the targeting siRNAs is thought to be initiated by the activity of the plant-specific RNA polymerase IV (Pol-IV). However, the mechanism through which Pol-IV is targeted to specific genomic loci and whether factors other than the core Pol-IV machinery are required for Pol-IV activity remain unknown. Through the affinity purification of nuclear RNA polymerase D1 (NRPD1), the largest subunit of the Pol-IV polymerase, we found that several previously identified RdDM components co-purify with Pol-IV, namely RNA-dependent RNA polymerase 2 (RDR2), CLASSY1 (CLSY1), and RNA-directed DNA methylation 4 (RDM4), suggesting that the upstream siRNA generating portion of the RdDM pathway may be more physically coupled than previously envisioned. A homeodomain protein, SAWADEE homeodomain homolog 1 (SHH1), was also found to co-purify with NRPD1; and we demonstrate that SHH1 is required for de novo and maintenance DNA methylation, as well as for the accumulation of siRNAs at specific loci, confirming it is a bonafide component of the RdDM pathway.  相似文献   

8.
Regulation and function of DNA methylation in plants and animals   总被引:2,自引:0,他引:2  
He XJ  Chen T  Zhu JK 《Cell research》2011,21(3):442-465
  相似文献   

9.
10.
11.
12.
13.
14.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

15.
16.
17.
18.
A DNA target of 30 bp is sufficient for RNA-directed DNA methylation   总被引:11,自引:2,他引:9       下载免费PDF全文
In higher plants, RNA-DNA interactions can trigger de novo methylation of genomic sequences via a process that is termed RNA-directed DNA methylation (RdDM). In potato spindle tuber viroid (PSTVd)-infected tobacco plants, this process can potentially lead to methylation of all C residues at symmetrical and nonsymmetrical sites within chromosomal inserts that consist of multimers of the 359-bp-long PSTVd cDNA. Using PSTVd cDNA subfragments, we found that genomic targets with as few as 30 nt of sequence complementarity to the viroid RNA are detected and methylated. Genomic sequencing analyses of genome-integrated 30- and 60-bp-long PSTVd subfragments demonstrated that de novo cytosine methylation is not limited to the canonical CpG, CpNpG sites. Sixty-base-pair-long PSTVd cDNA constructs appeared to be densely methylated in nearly all tobacco leaf cells. With the 30-bp-long PSTVd-specific construct, the proportion of cells displaying dense transgene methylation was significantly reduced, suggesting that a minimal target size of about 30 bp is necessary for RdDM. The methylation patterns observed for two different 60-bp constructs further suggested that the sequence identity of the target may influence the methylation mechanism. Finally, a link between viroid pathogenicity and PSTVd RNA-directed methylation of host sequences is proposed.  相似文献   

19.
DNA methyltransferases are not only sequence specific in their action, but they also differentiate between the alternative methylation states of a target site. Some methyltransferases are equally active on either unmethylated or hemimethylated DNA and consequently function as de novo methyltransferases. Others are specific for hemimethylated target sequences, consistent with the postulated role of a maintenance methyltransferase in perpetuating a pattern of DNA modification. The molecular basis for the difference between de novo and maintenance methyltransferase activity is unknown, yet fundamental to cellular activities that are affected by different methylation states of the genome. The methyltransferase activity of the type I restriction and modification system, EcoK, is the only known prokaryotic methyltransferase shown to be specific for hemimethylated target sequences. We have isolated mutants of Escherichia coli K-12 which are able to modify unmethylated target sequences efficiently in a manner indicative of de novo methyltransferase activity. Consistent with this change in specificity, some mutations shift the balance between DNA restriction and modification as if both activities now compete at unmethylated targets. Two genes encode the methyltransferase and all the mutations are loosely clustered within one of them.  相似文献   

20.
Previous analysis of potato spindle tuber viroid (PSTVd) RNA-infected tobacco plants has suggested that an RNA-DNA interaction could trigger de novo methylation of PSTVd transgene sequences. Using the genomic sequencing technique, the methylation pattern associated with the RNA-directed DNA methylation process has been characterized. Three different PSTVd transgene constructs all showed a similar pattern of methylation. Most of the cytosines at symmetrical as well as non-symmetrical positions appeared to be methylated in both DNA strands of the viroid sequences. Heavy methylation was mostly restricted to the viroid cDNA sequences. Flanking DNA regions immediately adjacent to the viroid cDNA displayed a lower but significant level of cytosine methylation. The observation that the heavy methylation was essentially co-extensive with the length of the PSTVd cDNA sequences provided evidence that a direct RNA-DNA interaction can act as a strong and highly specific signal for de novo DNA methylation. These data also confirmed that de novo methylation was not limited to canonical CpG and CpNpG sites, but can also involve all the cytosine residues located in the genomic region where the RNA-DNA interaction takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号