首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The uptake of [1-3H]geranylgeranyl diphosphate (GGPP) into protoplasts and intact etioplasts and the metabolic interconversion therein was studied after a 2 min pulse of white light. The chlorophyll synthetase reaction, Chlide+GGPPChlGG, was taken as a natural probe for the etioplast compartment. This reaction yields labeled ChLGG and, by hydrogenation, labeled ChlP, when [1-3H]GGPP receives access to the etioplast stroma. It was found that penetration across the plastid envelope was rapid and that penetration across the plasma membrane of protoplasts, however, was slow. A cellular pool of soluble GGPP was detected. This pool was lost, in part, during preparation of the protoplasts and almost completely during preparation of the etioplasts. The membrane-bound phytol pool of etioplasts could not be replaced by exogenous [3H]GG. The endogenous GG and phytol pools of protoplasts, which were larger than those of etioplasts, could be replaced in part by exogenous [3H]GGPP. That part of this pool exists as soluble GGPP or as a direct precursor in the cytoplasm is discussed.Abbreviations GGPP geranylgeranyldiphosphate - ChlGG geranylgeranyl chlorophyllide a - ChlP phytyl chlorophyllide a - IPP isopentenyl diphosphate - Chlide chlorophyllide a  相似文献   

3.
Protoplasts were prepared from Ulva fasciata Delile, and their photosynthetic performance was measured and compared with that of thalli discs. These protoplasts maintained maximal rates of photosynthesis as high as those of thalli (up to 300 μmol O2·mg chlorophyll?1·h?1) for several hours after preparation and were therefore considered suitable for kinetic studies of inorganic carbon utilization. The photosynthetic K1/2(inorganic carbon) at pH 6.1 was 3.8 μM and increased to 67, 158, and 1410 μM at the pH values 7.0, 7.9, and 8.9, respectively. Compared with these protoplasts, thalli had a much lower affinity for CO2 but approximately the same affinity for HCO3?. Comparisons between rates of photosynthesis and the spontaneous dehydration of HCO3? (at 50 μM inorganic carbon) revealed that photosynthesis of both protoplasts (which lacked apparent activity of extracellular/surface-bound carbonic anhydrase) and thalli (which were only 25% inhibited by the external carbonic anhydrase inhibitor acetazolamide) could not be supported by CO2 formation in the medium at the higher pH values, indicating HCO3? uptake. Since both protoplasts and thalli were sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulfonate, we suggest that HCO3? transport was facilitated by the membrane-located anion exchange protein recently reported to function in certain Ulva thalli. These findings suggest that the presence of a cell wall may constitute a diffusion barrier for CO2, but not for HCO3?, utilization under natural seawater conditions.  相似文献   

4.
Lin W 《Plant physiology》1980,66(4):550-554
A method was developed for the large scale and rapid isolation of intact viable corn root protoplasts. Pure and metabolically active protoplasts were collected using a flotation technique. Vital staining tests, light and electron microscopy, and measurements of basic metabolic processes indicated that the isolated protoplasts were metabolically active, and that the plasmalemma and other organelles were well preserved. The isolated protoplasts performed normal, active ion transport functions. Time course of K+ and inorganic phosphate (H2PO4) influx and the effects of external pH, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, fusicoccin, and diethylstilbestrol on K+ and inorganic phosphate influx and net H+ efflux in isolated protoplasts correlated well with data obtained on root segments. Data presented indicated that isolated protoplasts from roots can be used to gain additional insights into the mechanism of ion transport in plant cells.  相似文献   

5.
Photosynthetic rates measured in protoplasts isolated from the broivn alga Macrocystis pyrifera (L.) Ag. were compared to those for intact tissue. Both 14C incorporation and O2 evolution gave similar rates of light-saturated protoplast photosynthesis (approximately 0.4 mmol-g chl a?1· min?1). Light saturated photosynthetic rates (Pmax) and light harvesting efficiencies (α) of protoplasts were approximately 40% those of intact tissue. In contrast, protoplasts had a greater substrate affinity for photosynthetic HCO3 uptake (lower K0.5) than intact tissue (0.87 and 4.1 mMolar, respectively), presumably because of a reduction in the thickness of the unstirred boundary layer in the absence of the cell wall. Overall, the data suggest that protoplasts isolated from Macrocystis pyrifera are of valur in the study of photosynthesis. However, experiments with intact tissue are necessary as controls to aid interpretation of protoplast data.  相似文献   

6.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

7.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

8.
CO2 fixation during photosynthesis is regulated by the activity of ribulose bisphosphate carboxylase (Rubisco). This conclusion became more apparent to me after CO2-fixation experiments using isolated spinach chloroplasts and protoplasts, purified Rubisco enzyme, and intact leaves. Ribulose bisphosphate (RuBP) pools and activation of Rubisco were measured and compared to 14CO2 fixation in light. The rates of 14CO 2 assimilation best followed the changes in Rubisco activation under moderate to high light intensities. RuBP pool sizes regulated 14 2 assimilation only in very high CO2 levels, low light and in darkness. Activation of Rubisco involves two separate processes: carbamylation of the protein and removal of inhibitors blocking carbamylation or blocking RuBP binding to carbamylated sites before reaction with CO2 or O2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
H. Schnabl 《Planta》1980,149(1):52-58
Isolated, purified mesophyll and guard-cell protoplasts of Vicia faba L. and Allium cepa L. were exposed to 14CO2 in the light and in the dark. The guard-cell protoplasts of Vicia and Allium did not show any labeling in phosphorylated products of the Calvin cycle, thus appearing to lack the ability to reduce CO2 photosynthetically. In Vicia, high amounts of radioactivity (35%) appeared in starch after 60-s pulses of 14CO2 both in the light and in the dark. Presumably, the 14CO2 is fixed into the malate via PEP carboxylase and then metabolized into starch as the final product of gluconeogenesis. This is supported by the fact that guard-cell protoplasts exposed to malic acid uniformly labeled with 14CO2 showed high amounts of labeled starch after the incubation, whereas cells labeled with [4-14C]malate had minimal amounts of labeled starch (1/120).In contrast, the starch-deficient Allium, guard-cell protoplasts did not show any significant 14CO2 fixation. However, adding PEP to an homogenate stimulated 14CO2 uptake, thus supporting the interpretation that the presence of starch as a source of PEP is necessary for incorporating CO2 and delivering malate. With starch-containing Vicia guard-cell protoplasts, the correlation between changes in volume and the interconversion of malate and starch was demonstrated. It was shown that the rapid gluconeogenic conversion of malate into starch prevents an increase of the volume of the protoplasts, whereas the degradation of starch to malate is accompanied by a swelling of the protoplasts.Abbreviations GCPs guard-cell protoplasts - MCPs mesophyll cell protoplasts - PEP phosphoenolpyruvate - DTT dithiothreitol - 3-PGA 3-phosphoglyceric acid - RiBP ribulose 1,5 bisphosphate - MDH malate dehydrogenase - MES 2-(N-morpholino)ethane sulfonic acid - CAM crassulacean acid metabolism  相似文献   

10.
Silicic acid taken up from the growth medium by Navicula pelliculosa (Bréb.) Hilse was shown to enter at least two compartments: i) soluble pools; ii) insoluble fraction comprised predominantly of the silica frustule. Soluble Si pools were extracted by a variety of agents from cells uniformly labeled for ten generations in medium containing 68Ge-Si(OH)4. 100 C water soluble and 0 C perchloric acid (PCA) soluble Si pools of 680 mM Si·l?1 and 490 mM Si·l?1 cell water represented 13 and 9%, respectively, of total, cell Si in exponential growth phase cells. Uniformly labeled cells synchronized by the combined synchronization technique accumulate at the cell cycle stage where silica frustule development is initiated. These cells contain water and PCA soluble pools of 10 nmol Si·106 cells?1 and-8.8 nmol Si·106 cells?1, respectively. On addition of Si(OH)4, a rapid uptake ensues allowing the Si pool to expand 2.5-fold, apparently to provide precursors of the silica frustule.  相似文献   

11.
Rincon M  Boss WF 《Plant physiology》1987,84(2):395-398
To determine whether or not inositol trisphosphate (IP3) mobilizes calcium in higher plant cells, we investigated the effect of IP3 on Ca2+ fluxes in fusogenic carrot (Daucus carota L.) protoplasts. The protoplasts were incubated in 45Ca2+-containing medium and the 45Ca2+ associated with the protoplasts was monitored with time. Addition of IP3 (20 micromolar) caused a 17% net loss of the accumulated 45Ca2+ within 4 minutes. There was a reuptake of 45Ca2+ and the protoplasts recovered to their initial value by 10 minutes. Phytic acid (IP6), also stimulated 45Ca2+ efflux from the protoplasts. Both the IP3 and the IP6induced 45Ca2+ efflux were inhibited by the calmodulin antagonist, trifluoperazine.  相似文献   

12.
A role for cytosolic pH (pHi) in hormonal signalling and transport control in plants has long been mooted. Yet, while changes in pHi are a common consequence of hormonal stimuli in plant cells and contribute to hormonally evoked ion channel control, the origins of these changes remain unknown. To examine a possible role for the tonoplast and vacuolar compartment in these events, pHi was measured in the presence of auxins and during cytosolic H+ loading with weak acid in vacuolate and evacuolate protoplasts, both from mesophyll and guard cells of Vicia faba L. Evacuolate protoplasts were obtained following ultracentrifugation on Percoll gradients, and pHi of single protoplasts was recorded in both vacuolate and evacuolate preparations using fluorescence ratio microphotometry and the pH-sensitive dye BCECF. External pH measurements indicated a roughly twofold increase in the rate of net H+ secretion in evacuolate compared with vacuolate protoplasts, and showed that evacuolate protoplasts retained the characteristic stimulation of H+ secretion in the presence of auxin. BCECF fluorescence recording gave resting pHi values near 7.5, and evacuolation had no significant effect on this parameter. Reversible decreases of 0.1–0.2 units in pHi were evoked in vacuolate protoplasts by 10 μM concentrations of the auxins 1-naphthalene acetic acid and 3-indoyl-acetic acid, and not by the inactive (anti-auxin) analogue 2-naphthalene-acetic acid. However, auxin treatments failed to evoke a change in pHi in all but one of 12 experiments with evacuolate protoplasts. Evacuolation also appeared to reduce the transient, dynamic H+ buffering capacity of the protoplasts in the face of acid pHi loads imposed by adding Na+-butyrate to the bath. These results implicate the tonoplast or vacuolar compartment in short-term pHi homeostasis and generation of hormonally evoked H+ signalling in plant cells; they also conform with the view that the decrease in pHiper se is not a primary determinant in the stimulation of H+ secretion by auxin.  相似文献   

13.
Summary Attachment of virions of tobacco mosaic virus to protoplasts isolated from dividing suspension cultured cells ofNicotiana sylvestris was estimated using quantitative autoradiography of individual protoplasts. Additionally, the position of each protoplast in the cell cycle was assessed by Feulgen microspectrophotometry. At pH 5.6, after preincubation with 4 g 1–1 poly-L-ornithine, protoplasts in the G1 and G2 phases bound more virions than protoplasts in the S-phase. The possibility that such differential binding was caused by cyclical variation in the net charge on the protoplast membrane has been investigated. It was found that S-phase protoplasts ofN. sylvestris can be separarated from protoplasts of other cycle stages by partition in aqueous, two-phase, immiscible polymer systems, presumably because they differ in charge. Also, electrophoretic studies suggest that G1 phase protoplasts bear higher surface charge than some non-G1 protoplasts.  相似文献   

14.
Photosynthetic CO2-fixation of mesophyll protoplasts of lambs lettuce [Valerianella locusta (L.) Betcke] was inhibited by short time exposure to Cd+. Inhibition was due to uptake of the metal ion into the protoplasts and increased with increasing Cd2+ concentrations and the time of preincubation. A 10 min pretreatment at 2 mM Cd2+ reduced CO2-fixation by 40–60%. Inhibition of photosynthesis was independent of the light intensity to which the protoplasts were exposed. Measurement of the lightinduced electrochromic pigment absorption change at 518nm and chlorophyll fluorescence studies revealed that primary photochemical reactions associated with the thylakoid membranes were not affected by the metal ion. Also, light activation of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) was not inhibited by Cd2+. Under rate-limiting CO2 concentrations, inhibition of CO2-fixation was smaller than at Vmax of CO2 reduction indicating that the carboxylation reaction of the Calvin cycle is not susceptible to Cd2+. Cd2+ treatment of protoplasts significantly extended the lagphase of CO2-supported O2-evolution and partly inhibited light activation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and the ribulose-5-phosphate kinase (EC 2.7.1.19). Measurement of relative concentrations of [14C]-labeled Calvin cycle intermediates showed that Cd2+ caused a decrease in the 3-phosphoglycerate/triose phosphate ratio and an increase in the triose phosphate/ribulose-1,5-bisphosphate ratio. It is concluded that in protoplasts Cd2+ affects photosynthesis mainly at the level of dark reactions and that the site of inhibition may be localized in the regenerative phase of the Calvin cycle.  相似文献   

15.
The subcellular localization and biochemical characterization of calcium transport were studied in the unicellular green alga Mesotaenium caldariorum. Membrane fractions prepared by osmotic lysis of Mesotaenium protoplasts exhibit high rates of ATP-dependent calcium uptake. Sucrose gradient centrifugation separates two pools of activity, which display specific activities for calcium transport as high as 15 nanomoles Ca2+ per minute per milligram of protein. Marker enzyme analysis shows that this dual distribution of calcium transport activity is similar to that of vanadate-insensitive ATPase and pyrophosphatase, activities considered to be associated with the tonoplast. Plasma membranes, endoplasmic reticulum vesicles, mitochondrial membranes, and thylakoids band at higher densities than either calcium transport fraction. Both pools of ATP-dependent calcium uptake contain two components which are not separable on sucrose gradients but can be distinguished on the basis of inhibitor sensitivity. One component is inhibited by nigericin or trimethyltin chloride (I50 values of 3 nanomolar and 4 micromolar, respectively), while the other component is vanadate sensitive (I50 of 25 micromolar). These results suggest that direct Ca2+ transport and Ca2+/H+ antiport activities are present in both sucrose gradient fractions.  相似文献   

16.
Sicher RC 《Plant physiology》1982,70(2):366-369
The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase displayed near-maximal activity in isolated, intact barley (Hordeum vulgare L. cv. Pennrad) mesophyll protoplasts. The carboxylase deactivated 40 to 50% in situ when protoplasts were dark-incubated 20 minutes in air-equilibrated solutions. Enzyme activity was fully restored after 1 to 2 minutes of light. Addition of 5 millimolar NaHCO3 to the incubation medium prevented dark-inactivation of the carboxylase. There was no permanent CO2-dependent activation of the protoplast carboxylase either in light or dark. Activation of the carboxylase from ruptured protoplasts was not increased significantly by in vitro preincubation with CO2 and Mg2+. In contrast to the enzyme in protoplasts, the carboxylase in intact barley chloroplasts was not fully reactivated by light at atmospheric CO2 levels. The lag phase in carbon assimilation was not lengthened by dark-adapting protoplasts to low CO2 demonstrating that light-activation of the carboxylase was not involved in photosynthetic induction. Irradiance response curves for reactivation of the the carboxylase and for CO2 fixation by isolated barley protoplasts were similar. The above results show that there was a fully reversible light-activation of the carboxylase in isolated barley protoplasts at physiologically significant CO2 levels.  相似文献   

17.
Summary The polycation mediated attachment of purified tritiated DNA to plant protoplasts has been measured by quantitative microautoradiography. The automated grain counting technique used, also provides information on the cell cycle stage of individual protoplasts, which circumvents the need to synchronize the plant cell population before preparation of protoplasts. With protoplasts from asynchronously dividing suspension cultures of Nicotiana syhestris (NS-1), S-phase protoplasts appear to be inefficient binders of 3H-DNA, as compared with G1 or G2 protoplasts. Protoplasts derived from a tumour line of Crepis capillaris (CAPT) exhibit 3H-DNA binding at all cell cycle phases, but Sphase protoplasts appear to be preferential binders. These differences are discussed with reference to cell cycle kinetics, membrane charge variation and the possibility of increasing the efficiency of genetic transformation of higher plant cells in culture.  相似文献   

18.
Cornejo  M. J.  Platt-aloia  K. A.  Thomson  W. W.  Jones  R. L. 《Protoplasma》1988,146(2-3):157-165
Summary Freeze-fracture electron microscopy was used to study changes in the endomembrane system of barley (Hordeum vulgare L. cv. Himalaya) aleurone protoplasts. Protoplasts were used for this study because their response to calcium and the plant hormone gibberellic acid (Ga3) can be monitored prior to rapid freezing of cells for electron microscopy. Protoplasts incubated in Ga3 plus Ca2+ secrete elevated levels of a-amylase relative to cells incubated in Ga3 or Ca2+ alone. The endoplasmic reticulum (ER) and Golgi apparatus of protoplasts incubated in Ga3 plus Ca2+ undergo changes that are well correlated with the synthesis and secretion of a-amylase. The ER, which appears as short, single sheets of membrane in Ca2+-and Ga3-treated protoplasts, exists as a series of long fenestrated stacks of membranes following incubation in Ga3 plus Ca2+. The Golgi apparatus is also more highly developed in protoplasts treated with Ga3 plus Ca2+. This organelle is larger and has more vesicles associated with its periphery in protoplasts that actively secrete a-amylase. Evidence that the Golgi apparatus participates in a-amylase secretion is also provided by experiments with the ionophore monensin, which causes pronounced swelling of Golgi cisternae and inhibits the secretion of a-amylase. We interpret these observations as showing that the ER and Golgi apparatus of barley aleurone participate in the intracellular transport and secretion of a-amylase. The plasmalemma (PF face) of barley aleurone protoplasts shows a high density of intramembranous particles (IMPs) which, in general, are evenly distributed. Occasionally, ordered arrays of IMPs are observed, possibly resulting fro m osmotic stress. after 48 hours the plasmalemma of some Ga3-treated protoplasts show particle-free areas considered to be indications of senescence.abbreviations ER endoplasmic reticulum - Ga3 gibberellic acid - IEF isoelectric focusing - IMP intramembranous particle - PF protoplasmic fracture - PL plasmalemma  相似文献   

19.
Stomatal movement is an energetic oxygen-requiring process. In the present study, the effect of oxygen concentration on mitochondrial respiratory activity and red-light-dependent photosynthetic oxygen evolution by Vicia faba and Brassica napus guard cell protoplasts was examined. Comparative measurements were made with mesophyll cell protoplasts isolated from the same species. At air saturated levels of dissolved oxygen in the protoplast suspension media, respiration rates by mesophyll protoplasts ranged from 6 to 10μmoles O2 mg?1 chl h?1, while guard cell protoplasts respired at rates of 200–300 μmoles O2 mg chl?1 h?1, depending on the species. Lowering the oxygen concentration below 50–60 mmol m?3 resulted in a decrease in guard cell respiration rates, while rates by mesophyll cell protoplasts were reduced only at much lower concentrations of dissolved oxygen. Rates of photosynthesis in mesophyll cell protoplasts isolated from both species showed only a minor reduction in activity at low oxygen concentrations. In contrast, photosynthesis by guard cell protoplasts isolated from V. faba and B. napus decreased concomitantly with respiration. Oligomycin, an inhibitor of oxidative phos-phorylation, reduced photosynthesis in mesophyll cell protoplasts by 27–46% and in guard cell protoplasts by 51–58%. The reduction in both guard cell photosynthesis and respiration following exposure to low oxygen concentrations suggest close metabolic coupling between the two activities, possibly mediated by the availability of substrate for respiration associated with photosynthetic electron transport activity and subsequent export of redox equivalents.  相似文献   

20.
The kinetics of 14C fixation, and inorganic C (Cinorg) accumulation, have been followed in isolated pea mesophyll protoplasts. NaH14CO3 was supplied to the protoplasts in media the pH of which was varied between 7 and 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号