首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ten new defensins have been isolated from seeds of Triticum kiharae and related species of the Triticum and Aegilops genera by a combination of chromatographic procedures including affinity-, size-exclusion, and reversed-phase high-performance liquid chromatography. Nine were completely sequenced and shown to represent a family of closely related peptides with highly conserved amino acid sequences. Analysis of defensin compositions in diploid A-, B-, and D-genome donors to polyploid wheat allowed us for the first time to assign most defensin-encoding genes to particular hexaploid wheat genomes.  相似文献   

2.
小麦染色体组的起源与进化探讨   总被引:4,自引:0,他引:4  
陈庆富   《广西植物》1997,17(3):276-282
对小麦染色体组的起源及其进化进行了全面综述后,提出了一个新的小麦进化途径,并认为:(1)Triticummonococumvarurartu是多倍体小麦A组的原初供体,在A组进入多倍体小麦后有Tmonovarboeoticum的基因渗入;(2)B和G组的原初供体是Tspeltoides的S组,在该S组进入多倍体小麦后有两个进化方向,即S组结构分化形成G组和S组经外源染色体代换及重组等而进化成B组;(3)Tturgidum和Ttimophevi都是来自Tspeltoides为母本与Tmonovarurartu杂交后并双二倍化而形成的原初四倍体小麦(SSAA),并由它分别经遗传渗入和结构分化而成;(4)Tzhukovskyi是Ttimophevi作母本与Tmonovarboeoticum杂交并双二倍化而形成,故它具有分别来自Tmonovarurartu和Tmonovarboeoticum的两类A组;(5)Taestivum的D组来自Ttauschi;(6)无论A组、B组、D组、G组在进入多倍体小麦后均有相当分化,同时在其供体种中也有一定分化。  相似文献   

3.
Summary Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats.  相似文献   

4.
Common wheat (Triticum aestivum) has for decades been a textbook example of the evolution of a major crop species by allopolyploidization. Using a sophisticated extension of the PCR technique, we have successfully isolated two single-copy nuclear genes, DMC1 and EF-G, from each of the three genomes found in hexaploid wheat (BA(u)D) and from the two genomes of the tetraploid progenitor Triticum turgidum (BA(u)). By subjecting these sequences to phylogenetic analysis together with sequences from representatives of all the diploid Triticeae genera we are able for the first time to provide simultaneous and strongly supported evidence for the D genome being derived from Aegilops tauschii, the A(u) genome being derived from Triticum urartu, and the hitherto enigmatic B genome being derived from Aegilops speltoides. Previous problems of identifying the B genome donor may be associated with a higher diversification rate of the B genome compared to the A(u) genome in the polyploid wheats. The phylogenetic hypothesis further suggests that neither Triticum, Aegilops, nor Triticum plus Aegilops are monophyletic.  相似文献   

5.
The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.  相似文献   

6.
K Kerby  J Kuspira  B L Jones 《Génome》1988,30(4):576-581
To determine whether the Triticum urartu genome is more closely related to the A or B genome of the polyploid wheats, the amino acid sequence of its purothionin was compared to the amino acid sequences of the purothionins in Triticum monococcum, Triticum turgidum, and Triticum aestivum. The residue sequence of the purothionin from T. urartu differs by five and six amino acid substitutions respectively from the alpha 1 and alpha 2 forms coded for by genes in the B and D genomes, and is identical to the beta form specified by a gene in the A genome. Therefore, the T. urartu purothionin is either coded by a gene in the A genome or a chromosome set highly homologous to it. The results demonstrate that at least a portion of the T. urartu and T. monococcum genomes is homologous and probably identical. A variety of other studies have also shown that T. urartu is very closely related to T. monococcum and, in all likelihood, also possesses the A genome. Therefore, it could be argued that either T. urartu and T. monococcum are the same species or that T. urartu rather than T. monococcum is the source of the A genome in T. turgidum and T. aestivum. Except for Johnson's results, our data and that of others suggest a revised origin of polyploid wheats. Specifically, the list of six putative B genome donor species is reduced to five, all members of the Sitopsis section of the genus Aegilops.  相似文献   

7.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

8.
In vitro DNA:DNA hybridizations and hydroxyapatite thermal-elution chromatography were employed to identify the diploid wheat species ancestral to the B genome of Triticum turgidum. 3H-T. turgidum DNA was hybridized to the unlabeled DNAs of T. urartu, T. speltoides, T. sharonensis, T. bicorne, T. longissimum, and T. searsii. 3H-Labeled DNAs of T. monococcum and a synthetic tetraploid AADD were hybridized with unlabeled DNAs of T. urartu and T. searsii to determine the relationship of the A genome of polyploid wheat and T. urartu. The heteroduplex thermal stabilities indicated that T. searsii was most closely related to the B genome of T. turgidum (AB) and that the genome of T. urartu and the A genome have a great deal of base-sequence homology. Thus, it appears that T. searsii is the B-genome donor to polyploid wheat or a major chromosome donor if the B genome is polyphyletic in origin.Published with the approval of the Director of The West Virginia Agricultural Experiment Station as Scientific Paper No. 1837.  相似文献   

9.
This study reports the molecular characterization, polymorphism, and phylogenetic relationships of Triticum aestivum , T. dicoccoides , T. urartu , and T. monococcum ssp. boeoticum , obtained from different locations in Anatolia, using 33 primer combinations to generate amplified fragment length polymorphism (AFLP) patterns in 31 individual plant samples. The objectives of this work were to estimate the phylogenetic relationships between these species and to investigate the genetic distance as a result of ecological and climatic factors. The origin of the A genome of polyploid wheats is also discussed. Eight hundred and seventy-five AFLP fragments had polymorphic loci, 133 of which were unique to T. monococcum ssp. boeoticum , 66 were unique to T. urartu , and 141 were unique to T. dicoccoides . Analysis using the program POPGENE showed polymorphism levels of T. monococcum ssp. boeoticum , T. urartu , and T. dicoccoides of 42.63, 32.34, and 27.71%, respectively. No correlation between genetic distance and ecological or climatic factors was recorded in this study. Our results support the hypothesis that T. urartu is a diploid ancestor of T. dicoccoides and T. aestivum .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 67–72.  相似文献   

10.
R Sallares  T A Brown 《Génome》1999,42(1):116-128
We present DNA sequence data showing population variation in the intergenic spacer (IGS) regions of the ribosomal DNAs (rDNAs) on the A genomes of 27 diploid and polyploid wheats. PCRs (polymerase chain reactions) specific for the A(m) genome gave products with five populations of Triticum monococcum but did not give products with AABB or AABBDD wheats. PCRs specific to the A(u) genome of T. urartu gave products with all the AABB and AABBDD polyploids that were tested, but not with T. monococcum. AAGG tetraploids gave products only with the A(u)-specific primers, but the AAAAGG hexaploid T. zhukovskyi gave products with both the A(u) and A(m) primers. Phylogenetic analysis showed a substantial degree of IGS divergence for both the A(m) and A(u) genomes in diploids and polyploids compared with other genomes of Triticum and Aegilops. The rate of evolution of the IGS is much greater than previously reported for the internal transcribed region of the rDNAs but the view that the IGS only gives random noise is rejected, the IGS sequences presented here reflecting the general evolutionary trends affecting the wheat genome as a whole.  相似文献   

11.
Summary A number of accessions of the three species of diploid wheat, Triticum boeoticum, T. monococcum, and T. urartu, were grown in 50 mol m-3 NaCl+2.5 mol m-3 CaCl2. Sodium accumulation in the leaves was low and potassium concentrations remained high. This was not the case in T. durum grown under the same conditions, and indicates the presence in diploid wheats of the enhanced K/Na discrimination character which has previously been found in Aegilops squarrosa and hexaploid wheat. None of the accessions of diploid wheat showed poor K/Na discrimination, which suggests that if the A genome of modern tetraploid wheats was derived from a diploid Triticum species, then the enhanced K/Na discrimination character became altered after the formation of the original allopolyploid. Another possibility is that a diploid wheat that did not have the enhanced K/Na discrimination character was involved in the hybridization event which produced tetraploid wheat, and that this diploid is now extinct or has not yet been discovered.  相似文献   

12.
H M Daud  J P Gustafson 《Génome》1996,39(3):543-548
In polyploid wheat, the origin of the B-genome donor has remained relatively unknown in spite of a number of investigations attempting to identify the parental species. A project was designed to isolate and clone a genome-specific DNA sequence from Triticum speltoides L. to determine if that species could be the B-genome donor. A cloning scheme involving the prescreening of 1-kb fragments followed by colony, dot blot, and Southern blot hybridization screenings was used to isolate a speltoides-specific sequence (pSp89.XI). The methods used allowed for rapid isolation of a genome-specific sequence when screened against total DNA from closely related species. Subsequent analyses showed that the sequence was barely detected in any of the other genomes of the annual Sitopsis section. The results of dot blot and Southern blot analyses established that (i) the sequence pSP89.XI, specific to T. speltoides relative to the other species of the Sitopsis section, was present in the genomes of tetraploid and hexaploid wheat, (ii) the relative abundance of pSp89.XI seemed to decrease from the diploid to the polyploid wheats, and (iii) the existence of a related, but modified B genome in polyploid wheat compared with that in modern T. speltoides was probable. Key words : genome-specific, DNA.  相似文献   

13.
Purothionins were extracted and purified from the diploid wheat Triticum monococcum. Two proteins were obtained, one of which was present in only very small amounts. The major purothionin of T. monococcum was sequenced and it had an amino acid sequence identical with that of the beta-purothionin of Triticum aestivum (hexaploid bread wheat). It is known that T. monococcum contains the wheat A genome, so the structural gene coding for the beta-purothionin must comprise a part of the A genome. There have been no observable (as amino acid replacements) changes in the DNA comprising either the beta-purothionin gene of T. aestivum or the purothionin gene of T. monococcum, since T. monococcum (or its wild equivalent, Triticum boeoticum) hybridized with the diploid wheat B genome progenitor and started the evolution from diploid to allohexaploid wheat. All of the investigated characteristics of the purothionin-like protein isolated in small amounts suggested that it was essentially identical in amino acid sequence with the T. monococcum purothionin. It may be a dimerized form of beta-purothionin.  相似文献   

14.
Hexaploid wheat (Triticum aestivum L em Thell) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes. In this study, we evaluated the ability of microsatellite sequences from T. aestivum to be revealed on different ancestral diploid species more or less closely related, i.e. to test for their transferability. Fifty five primer pairs, evenly distributed all over the genome, were investigated. Forty three of them mapped to single loci on the hexaploid wheat genetic map although only 20 (46%) gave single PCR products; the 23 others (54%) gave more than one band with either only one being polymorphic, the others remaining monomorphic, or with several co-segregating polymorphic bands. The other 12 detected two (9) or three (3) different loci. From the 20 primer pairs which gave one amplification pro- duct on hexaploid wheat, nine (45%) also amplified products on only one of the diploid species, and seven (35%) on more than one. Four microsatellites (20%) which mapped to chromosomes from the B genome of wheat, did not give any amplification signal on any of the diploid species. This suggests that some regions of the B genome have evolved more rapidly compared to the A or D genomes since the emergence of polyploidy, or else that the donor(s) of this B genome has(have) not yet been identified. Our results confirm that Triticum monococcum ssp. urartu and Triticum tauschii were the main donors of the A and D genomes respectively, and that Aegilops speltoides is related to the ancestor(s) of the wheat polyploid B genome. Received: 21 June 2000 / Accepted: 15 November 2000  相似文献   

15.
Li W  Huang L  Gill BS 《Plant physiology》2008,146(1):200-212
Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the A(m) genome of hexaploid Triticum zhukovskyi (A(m)AG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed.  相似文献   

16.
Ma ZC  Wei YM  Yan ZH  Zheng YL 《Genetika》2007,43(11):1534-1541
To carry out the comparative analysis of alpha-gliadin genes on A genomes of diploid and polyploid wheats, 8 full-length alpha-gliadin genes, including 3 functional genes and 5 pseudogenes, were obtained from diploid wheats, among which 2, 2 and 4 alpha-gliadin genes were isolated from T. urartu, T. monococcum and T. boeoticum, respectively. The results indicated that higher number of alpha-gliadin pseudogenes have been present in diploid wheats before the formation of polyploid wheats. Amino acid sequence comparative analysis among 26 alpha-gliadin genes, including 16 functional genes and 10 pseudogenes, from diploid and polyploid wheats was conducted. The results indicated that all alpha-gliadins contained four coeliac toxic peptide sequences (i.e., PSQQ, QQQP, QQPY and QPYP). The polyglutamine domains are highly variable, and the second polyglutamine stretch is usually disrupted by the lysine or arginine residue at the fourth position. The unique domain I is the most conserved domain. There are 4 and 2 conserved cysteine residues in the unique domains I and II, respectively. Comparative analysis indicated that the functional alpha-gliadin genes from A genome are highly conserved, whereas the identity of pseudogenes in diploid wheats are higher than those in hexaploid wheats. Phylogenetic analysis indicated that all the analyzed functional alpha-gliadin genes could be clustered into two major groups, among which one group could be further divided into 5 subgroups. The origin of alpha-gliadin pseudogene and functional genes were also discussed.  相似文献   

17.
The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (sections Dicoccoides and Triticum) and Timopheevii (section Timopheevii). Results reveal strictly maternal plastid inheritance of synthetic wheat amphiploids included in the study. A concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. Our analysis suggests that there were two ancestral representatives of Aegilops speltoides Tausch that participated in the speciation of polyploid wheats with B and G genome in their genome composition. However, G genome species are younger in evolution than ones with B genome. B genome-specific PCR primers were developed for amplification of Acc-1 gene.  相似文献   

18.
The transfer of genes between Triticum aestivum (hexaploid bread wheat) and T. turgidum (tetraploid durum wheat) holds considerable potential for genetic improvement of both these closely related species. Five different T. aestivum/T. turgidum ssp. durum crosses were investigated using Diversity Arrays Technology (DArT) markers to determine the inheritance of parental A, B and D genome material in subsequent generations derived from these crosses. The proportions of A, B and D chromosomal segments inherited from the hexaploid parent were found to vary significantly among individual crosses. F(2) populations retained widely varying quantities of D genome material, ranging from 99% to none. The relative inheritance of bread wheat and durum alleles in the A and B genomes of derived lines also varied among the crosses. Within any one cross, progeny without D chromosomes in general had significantly more A and B genome durum alleles than lines retaining D chromosomes. The ability to select for and manipulate this non-random segregation in bread wheat/durum crosses will assist in efficient backcrossing of selected characters into the recurrent durum or hexaploid genotype of choice. This study illustrates the utility of DArT markers in the study of inter-specific crosses to commercial crop species.  相似文献   

19.
Hexaploid wheat (Triticum aestivum L em Thell) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes, respectively. We recently isolated microsatellites from a T. tauschii library enriched for various motifs and evaluated the transferability of these markers to several diploid species carrying the A, B or D genomes. All of the primer pairs amplifying more than one locus on bread wheat and half of those giving D-genome-specific loci gave an amplification product on A-and/or B-diploid species. All of the markers giving a single amplification product for T. tauschii and no amplification on the other diploid species were D-genome-specific at the hexaploid level. The non-specific microsatellite markers (which gave an amplification product on diploid species carrying the A, B or D genome) gave either a complex amplification pattern on bread wheat (with several bands) or generated a single band which mapped to the D genome. Southern blot hybridizations with probes corresponding to the microsatellite flanking regions gave a signal on all diploid and hexaploid species, whatever the specificity of the microsatellite. The patterns observed on bread wheat were generally in accordance with those observed for diploid species, with slight rearrangements. This suggests that the specificity of microsatellite markers is probably due to mutations in microsatellite flanking regions rather than sequence elimination during polyploidization events and that genome stringency is higher at the polyploid than at the diploid level.  相似文献   

20.
Cytogenetic work has shown that the tetraploid wheats, Triticum turgidum and T. timopheevii, and the hexaploid wheat T. aestivum have one pair of A genomes, whereas hexaploid T. zhukovskyi has two. Variation in 16 repeated nucleotide sequences was used to identify sources of the A genomes. The A genomes of T. turgidum, T. timopheevii, and T. aestivum were shown to be contributed by T. urartu. Little divergence in the repeated nucleotide sequences was detected in the A genomes of these species from the genome of T. urartu. In T. zhukovskyi one A genome was contributed by T. urartu and the other was contributed by T. monococcum. It is concluded that T. zhukovskyi originated from hybridization of T. timopheevii with T. monococcum. The repeated nucleotide sequence profiles in the A genomes of T. zhukovskyi showed reduced correspondence with those in the genomes of both ancestral species, T. urartu and T. monococcum. This differentiation is attributed to heterogenetic chromosome pairing and segregation among chromosomes of the two A genomes in T. zhukovskyi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号