首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Microwave-assisted enzymatic digestion (MAED) technique was applied for ginkgo protein digestion with both free and immobilized enzyme. Under the optimized conditions of MAED (0.01 g/mL substrate concentration of bromelain, 4500 U/g enzyme/ginkgo protein, 30 min, 300 W microwave power), a higher digestion rate (7.50%) and a significant increase in antioxidant activity (72.7 mg/g) were obtained in contrast with the conventional methods. With the optimized digestion conditions (0.625% glutaraldehyde (v/v), 0.4 mg/mL initial concentration of bromelain and 4 h of immobilization), the activity and effectiveness factor of immobilized bromelain were respectively 86 U and 81.6%. The results of ginkgo digestion by applying MAED indicated that the digestion rate of immobilized bromelain obtained by MAED method (6.41%) was comparable to that of free bromelain in the conventional digestion (8.13%). In both case with immobilized and free bromelain while applying MAED, a homogeneously abundant distribution of peptide fragments (from 7.863 Da to 5856 Da) and a few different peptide profiles were found. This report brings in conclusion that applying MAED with immobilized enzyme has the potential to obtain the highest number of antioxidant activity peptides.  相似文献   

2.
Eighteen flavonoids were identified from an aqueous extract of the aerial parts of Dianthus versicolor, a plant used in traditional Mongolian medicine against liver diseases. The flavonoid C- and O-glycosides isoorientin-7-O-rutinoside, isoorientin-7-O-rhamnosyl-galactoside, isovitexin-7-O-rutinoside, isovitexin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-rutinoside, isoscoparin-7-O-rhamnosyl-galactoside, isoscoparin-7-O-galactoside, and isoorientin-7-O-galactoside were isolated and structurally elucidated. Their structures were established on the basis of extensive spectroscopic techniques including LC–UV–DAD, LC–MSn, LC–HRMS, 1D and 2D NMR spectroscopy, and by GC–MS analysis after hydrolysis. Flavonoids with such a high glycosylation pattern are rare within the genus Dianthus. Furthermore, isovitexin-7-O-glucoside (saponarin), isovitexin-2″-O-rhamnoside, apigenin-6-glucoside (isovitexin), luteolin-7-O-glucoside, apigenin-7-O-glucoside, as well as the aglycons luteolin, apigenin, chrysoeriol, diosmetin, and acacetin were identified by TLC and LC–DAD–MSn in comparison to reference substances or literature data. The NMR data of seven structures have not been reported in the literature to date.  相似文献   

3.
To enable enzymatic coupling of saccharides to proteins, several di- and trisaccharides were hydroxy-arylated using anhydrous transesterification with methyl 3-(4-hydroxyphenyl)propionate, catalyzed by potassium carbonate. This transesterification resulted in the attachment of up to 3 hydroxy-aryl units per oligosaccharide molecule, with the monosubstituted product being by far the most abundant. The alkaline reaction conditions, however, resulted in a partial breakdown of reducing sugars. This breakdown could easily be bypassed by a preceding sugar reduction step converting them to polyols. Hydroxy-arylated products were purified by using solid phase extraction, based on the number of hydroxy-aryl moieties attached. Monohydroxy-arylated saccharose was subsequently linked to a tyrosine-containing tripeptide using horseradish peroxidase, as monitored by LC–MSn. This proof of principle for peptide and protein glycation with a range of possible saccharides and glycosidic polyols can lead to products with unique new properties.  相似文献   

4.
Ribonuclease (RNase) mapping of modified nucleosides onto RNA sequences is limited by RNase availability. A codon-optimized gene for RNase U2, a purine selective RNase with preference for adenosine, has been designed for overexpression using Escherichia coli as the host. Optimal expression conditions were identified enabling generation of milligram-scale quantities of active RNase U2. RNase U2 digestion products were found to terminate in both 2′,3′-cyclic phosphates and 3′-linear phosphates. To generate a homogeneous 3′-linear phosphate set of products, an enzymatic approach was investigated. Bacteriophage lambda protein phosphatase was identified as the optimal enzyme for hydrolyzing cyclic phosphates from RNase U2 products. The compatibility of this enzymatic approach with liquid chromatography–tandem mass spectrometry (LC–MS/MS) RNA modification mapping was then demonstrated. RNase U2 digestion followed by subsequent phosphatase treatment generated nearly 100% 3′-phosphate-containing products that could be characterized by LC–MS/MS. In addition, bacteriophage lambda protein phosphatase can be used to introduce 18O labels within the 3′-phosphate of digestion products when incubated in the presence of H218O, allowing prior isotope labeling methods for mass spectrometry to include digestion products from RNase U2.  相似文献   

5.
A total on-line analysis of a target protein from a plasma sample was made using a selective immunoextraction step coupled on-line to an immobilized enzymatic reactor (IMER) for the protein digestion followed by LC–MS/MS analysis. For the development of this device, cytochrome c was chosen as model protein due to its well-known sequence. An immunosorbent (IS) based on the covalent immobilization of anti-cytochrome c antibodies on a solid support was made and an immunoextraction procedure was carefully developed to assess a selective extraction of the target protein from plasma. For the first time, IS was easily coupled on-line with a laboratory-made IMER based on pepsin. The whole on-line device (IS-IMER-LC-MS/MS) allowed the quantification of cytochrome c from 8.5 pmol to 1.7 nmol in buffer medium. Finally, this device was applied to the analysis of only 85 pmol of cytochrome c from plasma with a RSD value lower than 10% (n = 3).  相似文献   

6.
Miscanthus × giganteus is a source of platform chemicals and bioethanol through fermentation. Cinnamates in leaves and stems were analysed by LC–ESI-MSn. Free phenols were extracted and separated chromatographically. More than 20 hydroxycinnamates were identified by UV and LC–ESI-MSn. Comparative LC–MS studies on the leaf extract showed isomers of O-caffeoylquinic acid (3-CQA, 4-CQA and 5-CQA), O-feruloylquinic acid (3-FQA, 4-FQA and 5-FQA) and para-coumaroylquinic acid (3-pCoQA and 5-pCoQA). Excepting 3-pCoQA, all were also detected in stem. 5-CQA dominated in leaf; a mandelonitrile–caffeoylquinic acid dominated in stem. Three minor leaf components were distinguished by fragmentation patterns in a targetted MS2 experiment as dicaffeoylquinic acid isomers. Others (Mr 516) were tentatively identified as hexosylcaffeoyl-quinates. Three positional isomers of O-caffeoylshikimic acid were minor components. p-Hydroxybenzaldehyde was also a major component in stem. This is the first report of the hydroxycinnamic acid profile of leaves and stems of M. × giganteus.  相似文献   

7.
The bark of Sambucus nigra contains a complex mixture of glycoproteins that are characterized as chimeric lectins known as type II ribosome inactivating proteins and holo lectins. These type II ribosome inactivating proteins possess RNA N-glycosidase activity in subunit A and lectin activity associated with subunit B exhibiting distinct sugar specificities to NeuAc(α2-6)-Gal/GalNAc and Gal/GalNAc. In the present study we have determined the N-glycosylation pattern of type II ribosome inactivating protein specific to NeuAc(α2-6)-Gal/GalNAc (Sambucus nigra agglutinin I) by subjecting it to digestion with multiple proteases. The resulting mixture of peptides and N-glycopeptides were analyzed on liquid chromatography coupled to electro spray ionization-iontrap mass spectrometry in MSn mode. MS2 of precursor ions was carried out using CID which provided information on glycan sequence. In subsequent MS3 of Y1/Y ions (peptide + HexNAc)+n of corresponding N-glycopeptides, resulted in the fragmentation of peptide backbone confirming the site of attachment. We observed microheterogeneity in each glycan occupied site with subunit A possessing four N-glycans out of six sites with complex and paucimannose types while subunit B comprises occupancy of two sites with a paucimannose and a high mannose type. The differential N-glycosylation of subunits in SNA is discussed in the context of other type II RIPs glycans.  相似文献   

8.
Peptide isoelectric focusing (IEF) is a common technique used in two-dimensional liquid chromatography tandem mass spectrometry (2D–LC–MS/MS) proteomic workflow, in which the tryptic peptide is first pre-fractionated based on pI values before being subjected to reverse phase LC–MS analysis. Although this method has been widely used by many research groups, a systemic study on the optimal conditions and fundamental parameters influencing the experimental outcomes has been lacking, including the effect of peptide extraction methods, the extent of pre-fractionation, and the choice of pH range. In this study, we compared the effect of different parameters on the numbers of peptides and proteins identified using two complex mouse proteomes. The results indicated that extraction of peptides from immobilized pH gradient (IPG) strips by sequential elution of increasingly organic solvents provided the highest number of peptide identification. In addition, we showed that approximately 45 more unique proteins were identified for every additional fraction collected during peptide IEF. Although narrow pH ranges provided higher resolution in peptide separation as expected, different pH ranges yielded similar numbers of peptide and protein identification. Overall, we demonstrated that the extraction solvent influenced the numbers of peptide and protein identification and quantitatively demonstrated the advantage of extensive fractionation and the performance of different pH ranges in practice.  相似文献   

9.
Limited proteolytic digestion is a method with a long history that has been used to study protein domain structures and conformational changes. A method of combining limited proteolytic digestion, stable isotope labeling, and mass spectrometry was established in the current study to investigate protein conformational changes. Recombinant monoclonal antibodies with or without the conserved oligosaccharides, and with or without oxidation of the conserved methionine residues, were used to test the newly proposed method. All of the samples were digested in ammonium bicarbonate buffer prepared in normal water. The oxidized deglycosylated sample was also digested in ammonium bicarbonate buffer prepared in 18O-labeled water. The sample from the digestion in 18O–water was spiked into each sample digested in normal water. Each mixed sample was subsequently analyzed by liquid chromatography–mass spectrometry (LC–MS). The molecular weight differences between the peptides digested in normal water versus 18O–water were used to differentiate peaks from the samples. The relative peak intensities of peptides with or without the C-terminal incorporation of 18O atoms were used to determine susceptibility of different samples to trypsin and chymotrypsin. The results demonstrated that the method was capable of detecting local conformational changes of the recombinant monoclonal antibodies caused by deglycosylation and oxidation.  相似文献   

10.
Ma J  Hou C  Liang Y  Wang T  Liang Z  Zhang L  Zhang Y 《Proteomics》2011,11(5):991-995
A metal‐ion chelate immobilized enzyme reactor (IMER) supported on organic–inorganic hybrid silica monolith was developed for rapid digestion of proteins. The monolithic support was in situ prepared in a fused silica capillary via the polycondensation between tetraethoxysilane hydrolytic sol and iminodiacetic acid conjugated glycidoxypropyltrimethoxysilane. After activated by Cu2+, trypsin was immobilized onto the monolithic support via metal chelation. Proteolytic capability of such an IMER was evaluated by the digestion of myoglobin and BSA, and the digests were further analyzed by microflow reversed‐phase liquid chromatography with ESI‐MS/MS. Similar sequence coverages of myoglobin and BSA were obtained by IMER, in comparison to those obtained by in‐solution digestion (91 versus 92% for 200 ng myoglobin, and 26 versus 26% for 200 ng BSA). However, the digestion time was shortened from 12 h to 50 s. When the enzymatic activity was decreased after seven runs, the IMER could be easily regenerated by removing Cu2+ via EDTA followed by trypsin immobilization with fresh Cu2+ introduced, yielding the equal sequence coverage (26% for 200 ng BSA). For ~5 μg rat liver extract, even more proteins were identified with the immobilized trypsin digestion within 150 s in comparison to the in‐solution digestion for 24 h (541 versus 483), demonstrating that the IMER could be a promising tool for efficient and high‐throughput proteome profiling.  相似文献   

11.
Amphetamines are a group of sympathomimetic drugs that exhibit strong central nervous system stimulant effects. d-Amphetamine ((+)-alpha-methylphenetylamine) is the parent drug in this class to which all others are structurally related. In drug discovery, d-amphetamine is extensively used either for the exploration of novel mechanisms involving the catecholaminergic system, or for the validation of new behavioural animal models. Due to this extensive use of d-amphetamine in drug research and its interest in toxicologic–forensic investigation, a specific and high-throughput method, with minimal sample preparation, is necessary for routine analysis of d-amphetamine in biological samples. We propose here a sensitive, specific and high-throughput bioanalytical method for the quantitative determination of d-amphetamine in rat blood using MS3 scan mode on a hybrid triple quadrupole-linear ion trap mass spectrometer (LC–MS/MS/MS). Blood samples, following dilution with water, were prepared by fully automated protein precipitation with acetonitrile containing an internal standard. The chromatographic separation was achieved on a Waters XTerra C18 column (2.1 mm × 30 mm, 3.5 μm) using gradient elution at a flow rate of 1.0 mL/min over a 2 min run time. An Applied Biosystems API4000 QTRAP™ mass spectrometer equipped with turbo ion-spray ionization source was operated simultaneously in MS3 scan mode for the d-amphetamine and in multiple reaction monitoring (MRM) for the internal standard. The MS/MS/MS ion transition monitored was m/z 136.1 → 119.1 → 91.1 for the quantitation of d-amphetamine and for the internal standard (rolipram) the MS/MS ion transition monitored was m/z 276.1 → 208.2. The linear dynamic range was established over the concentration range 0.5–1000 ng/mL (r2 = 0.9991). The method was rugged and sensitive with a lower limit of quantification (LLOQ) of 0.5 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. This method was successfully applied to evaluate the pharmacokinetics of d-amphetamine in rat. On a more general extent, this work demonstrated that the selectivity of the fragmentation pathway (MS3) can be used as alternative approach to significantly improve detection capability in complex situation (e.g., small molecules in complex matrices) rather than increasing time for sample preparation and chromatographic separation.  相似文献   

12.
The liquid chromatography–multiple reaction monitoring–tandem mass spectrometry (LC–MRM–MS/MS) method using 13C stable isotope-labeled dipeptides was newly developed to simultaneously determine the absorption of three antihypertensive peptides (Val-Tyr, Met-Tyr, and Leu-Tyr) into blood of spontaneously hypertensive rats in one run-in assay. After extracting 13C-labeled peptides in blood sample with a C18 cartridge, the extract was applied to a 13C monoisotopic transition LC–MRM–MS/MS system with d-Val-Tyr included as internal standard. An excellent separation of each dipeptide in LC was achieved at the elution condition of 5–100% methanol in 0.1% formic acid at a flow rate of 0.25 ml/min. The 13C-labeled peptides ionized by electron spray were detected in the positive ion mode within 15 min. The established method showed high reproducibility with less than 10% coefficient of variation as well as high accuracy of more than 85%. After the administration of a mixture containing the three 13C-labeled dipeptides to rats at each dose of 30 mg/kg, we could successfully determine the intact absorption of each 13C-labeled peptide with the maximal absorption amount of 1.1 ng/ml plasma for Val-Tyr by the proposed LC–MRM–MS/MS method.  相似文献   

13.
Phosphorylation is a protein post-translational modification with key roles in the regulation of cell biochemistry and signaling. In-depth analysis of phosphorylation using mass spectrometry is permitting the investigation of processes controlled by phosphorylation at the system level. A critical step of these phosphoproteomics methods involves the isolation of phosphorylated peptides from the more abundant unmodified peptides produced by the digestion of cell lysates. Although different techniques to enrich for phosphopeptides have been reported, there are limited data on their suitability for direct quantitative analysis by MS. Here we report a TiO2 based enrichment method compatible with large-scale and label-free quantitative analysis by LC–MS/MS. Starting with just 500 μg of protein, the technique reproducibly isolated hundreds of peptides, >85% of which were phosphorylated. These results were obtained by using relatively short LC–MS/MS gradient runs (45 min) and without any previous separation step. In order to characterize the performance of the method for quantitative analyses, we employed label-free LC–MS/MS using extracted ion chromatograms as the quantitative readout. After normalization, phosphopeptides were quantified with good precision (coefficient of variation was 20% on average, n = 900 phosphopeptides), linearity (correlation coefficients >0.98) and accuracy (deviations <20%). Thus, phosphopeptide ion signals correlated with the concentration of the respective phosphopeptide in samples, making the approach suitable for in-depth relative quantification of phosphorylation by label-free LC–MS/MS.  相似文献   

14.
In this study, peptidomics and genomics analyses were used to study antimicrobial peptides from the skin of Hylarana spinulosa. Twenty-nine different antimicrobial peptide precursors were characterized from the skin of H. spinulosa, which produce 23 mature antimicrobial peptides belonging to 12 different families. To confirm the actual presence and characteristics of these antimicrobial peptides in the skin tissue extractions from H. spinulosa, we used two distinct methods, one was peptide purification method that combined gel filtration chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), and the other was peptidomics approach based on liquid chromatography in conjunction with tandem mass spectrometry (LC–MS/MS). In the peptidomics approach, incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase peptidome coverage and reproducibility of peptide ion selection. Multiple species of microorganisms were chosen to test and analyze the antimicrobial activities and spectrum of these antimicrobial peptides.  相似文献   

15.
The isoforms Iso-2, Iso-3, and Iso-4 of Escherichia coli-derived recombinant human interferon alpha-2b (rhIFN α-2b), generated by posttranslational modifications of the protein during fermentation, present a major problem in terms of purification and the yield of the drug substance. We report here the structural characterization of these isoforms by mass spectrometry (MS) methods. An extensive MS study was conducted on Iso-4, which is composed of up to 75% of the in-process IFN, and on the native rhIFN α-2b. The trypsin-digested peptide mixtures generated from the two samples were analyzed by liquid chromatography (LC)–MS, and targeted peptides were further studied by LC–tandem MS (triple quadrupole mass spectrometer), high-resolution MSn (LTQ Orbitrap), and matrix-assisted laser desorption/ionization MS (MALDI–MS). The structure of Iso-4 was elucidated as a novel pyruvic acid ketimine derivative of the N-terminal cysteine (Cys1) of IFN α-2b, where the disulfide bond between Cys1 and Cys98 was fully reduced and the other disulfide bond pair, Cys29-ss-Cys138, was partially reduced. Similarly, Iso-2 was identified as a correctly disulfide-folded rhIFN α-2b with acetylation on Cys1, and Iso-3 was identified as an S-glutathionylated form (Cys98) of partially reduced rhIFN α-2b that was pyruvated on Cys1. Based on the characterization work, a reproducible conversion procedure was successfully implemented to convert Iso-4 to rhIFN α-2b.  相似文献   

16.
Flexible and protease resistant (G4S)n linkers are used extensively in protein engineering to connect various protein domains. Recently, several groups have observed xylose-based O-glycosylation at linker Ser residues that yield unwanted heterogeneity and may affect product quality. Because of this, an engineering effort was implemented to explore different linker sequence constructs. Here, we demonstrate the presence of an unexpected hydroxylation of a prolyl residue in the linker, made possible through the use of high-resolution mass spectrometry (HR-MS) and MSn. The discovery started with the detection of a poorly resolved ~+17 Da mass addition at the reduced protein chain level of an Fc-fusion construct by liquid chromatography-MS. Upon further investigation at the peptide level using HR-MS, the mass increase was determined to be +15.99 Da and was localized to the linker peptide SLSLSPGGGGGPAR [210–223]. This peptide corresponds to the C-terminus of Fc [210–216], the G4P linker [217–221], and first 2 amino acids of a growth factor [222–223]. The linker peptide was first subjected to MS2 with collision-induced dissociation (CID) activation. The fragmentation profile localized the modification to the GGGPA [218–222] portion of the peptide. Accurate mass measurement indicated that the modification is an addition of an oxygen and cannot be CH4, thus eliminating several possibilities such as Pro→Leu. However, other possibilities cannot be ruled out. Higher-energy collision-induced dissociation (HCD)-MS2 and MS3 using CID/CID were both unable to differentiate between Ala222→ Ser222 or Pro221→ Hyp221. Finally, MS3 using high-resolution CID/HCD confirmed the mass increase to be a Pro221→Hyp221 post-translational modification.  相似文献   

17.
Cellulase extracted from seeds of Cowpea (Vigna sinensis L var VITA-4) was partially purified and immobilized on brick dust as solid support via glutaraldehyde. The percentage retention of the enzyme activity on brick dust was nearly 85%. After immobilization specific activity of the enzyme increased from 0.275 to 0.557 U mg?1 protein with about 2 fold enrichment. The optimum pH and temperature of soluble enzyme were determined as pH 4.6 and WC, respectively whereas immobilized enzyme showed at pH 5.0 and 37°C, respectively. The Vmax values for soluble and immobilized enzyme were determined as 6.67 and 1.25 mg min?1, respectively whereas Km values were 4.35 and 4.76 mg ml?1, respectively. The immobilized enzyme displayed higher thermal stability than soluble enzyme and retained about 50% of its initial activity after 12 reuses. Immobilized enzyme was packed in an indigenously designed double walled glass bed reactor for continuous production of reducing sugars.  相似文献   

18.
Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30 to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE values preferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thereby enabling the putative glycan structure characterization. In addition, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. In contrast, HCD with higher NCE values preferentially fragmented the peptide backbone and, thus, provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N- and O-linked glycopeptides in a single liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both the peptide and the glycan, thereby enabling comprehensive structural characterization of glycoproteins in a single LC–MS/MS analysis.  相似文献   

19.
In this study, a novel microwave-assisted protein digestion method was developed using trypsin-immobilized magnetic nanoparticles (TIMNs). The magnetic nanoparticles worked as not only substrate for enzyme immobilization, but also excellent microwave irradiation absorber and, thus, improved the efficiency of microwave-assisted digestion greatly. Three standard proteins, bovine serum albumin (BSA), myoglobin, and cytochrome c, were used to optimize the conditions of this novel digestion method. With the optimized conditions, peptide fragments produced in very short time (only 15 s) could be identified successfully by MALDI-TOF-MS. When it was compared to the conventional in-solution digestion (12 h), equivalent or better digestion efficiency was observed. Even when protein quantity was as low as micrograms, this novel digestion method still could digest proteins successfully, while the same samples by conventional in-solution digestion failed. Moreover, with an external magnetic field, the enzyme could be removed easily and reused. It was verified that, after 4 replicate runs, the TIMNs still kept high activity. To further confirm the efficiency of this rapid digestion method for proteome analysis, it was applied to the protein extract of rat liver. Without any preparation and prefractionation processing, the entire proteome digested by TIMNs in 15 s went through LC-ESI-MS/MS direct analysis. The whole shotgun proteomic experiment was finished in only 1 h with the identification of 313 proteins ( p < 0.01). This new application of TIMNs in microwave-assisted protein digestion really opens a route for large-scale proteomic analysis.  相似文献   

20.
The identification of large series of metabolites detectable by mass spectrometry (MS) in crude extracts is a challenging task. In order to test and apply the so-called multistage mass spectrometry (MS n ) spectral tree approach as tool in metabolite identification in complex sample extracts, we firstly performed liquid chromatography (LC) with online electrospray ionization (ESI)?CMS n , using crude extracts from both tomato fruit and Arabidopsis leaf. Secondly, the extracts were automatically fractionated by a NanoMate LC-fraction collector/injection robot (Advion) and selected LC-fractions were subsequently analyzed using nanospray-direct infusion to generate offline in-depth MS n spectral trees at high mass resolution. Characterization and subsequent annotation of metabolites was achieved by detailed analysis of the MS n spectral trees, thereby focusing on two major plant secondary metabolite classes: phenolics and glucosinolates. Following this approach, we were able to discriminate all selected flavonoid glycosides, based on their unique MS n fragmentation patterns in either negative or positive ionization mode. As a proof of principle, we report here 127 annotated metabolites in the tomato and Arabidopsis extracts, including 21 novel metabolites. Our results indicate that online LC?CMS n fragmentation in combination with databases of in-depth spectral trees generated offline can provide a fast and reliable characterization and annotation of metabolites present in complex crude extracts such as those from plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号