首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Abstract: We have recently shown that the small GTP binding protein p21 ras is essential for nerve growth factor (NGF)-mediated survival of peripheral embryonic chick dorsal root ganglia (DRG) sensory but not sympathetic neurons. To investigate at which level of the signaling cascade the pathways diverge, we have studied the time-resolved pattern of NGF-stimulated tyrosine phosphorylation of proteins within 4 h after addition of the neurotrophin. In both chick sympathetic neurons [embryonic day (E) 12] and DRG sensory neurons (E9) NGF induces within 1 min the autophosphorylation of the receptor tyrosine kinase p140trk. However, the pattern of substrate protein tyrosine phosphorylation downstream of p140trk is distinctly different in both neuronal subtypes. In sympathetic neurons, we observe within 1 min the tyrosine phosphorylation of a new substrate protein, p105, reaching maximal levels at 3 min. Tyrosine phosphorylation of p105 remains elevated for up to 4 h. Subsequent to p105, NGF induces the tyrosine phosphorylation of p42, a protein belonging to the family of mitogen-activated protein (MAP) kinases. This stimulation is transient, reaching maximal levels at 10 min and returning to very low levels already after 2 h. In DRG sensory neurons, tyrosine phosphorylation of p105 is weak and very short lived, disappearing already after treatment with NGF for 10 min. In contrast, activation of MAP kinase p42 in DRG sensory neurons is more stable than in sympathetic neurons. All NGF-stimulated tyrosine phosphorylation events were inhibited by preincubation of neurons with the tropomyosin-related kinase (trk) inhibitor K252a. We suggest the working hypothesis that persistent tyrosine phosphorylation of p105 may play a role in the p21ras-independent NGF survival pathway of chick sympathetic neurons.  相似文献   

2.
Multiple Levels for Regulation of TrkA in PC12 Cells by Nerve Growth Factor   总被引:4,自引:0,他引:4  
Abstract: TrkA is a receptor tyrosine kinase for nerve growth factor (NGF). Recent studies indicate that NGF regulates not only activation of trkA kinase but also expression of the trkA gene. To further define NGF actions on trkA, we examined binding and signaling through trkA after both short and long intervals of NGF treatment. Induction of tyrosine phosphorylation on gp140 trkA was rapidly followed by down-regulation of cell surface and total cellular gp140 trkA . At later intervals, increased expression of trkA was evident in increased mRNA and protein levels. At 7 days, there was increased binding to gp140 trkA and increased signaling through this receptor. NGF appears to regulate trkA at several levels. In neurons persistently exposed to NGF, maintenance of NGF signaling may require increased trkA gene expression.  相似文献   

3.
Abstract: K-252b potentiates the neurotrophic effects of neurotrophin-3 (NT-3) in primary cultures of rat central cholinergic and peripheral sensory neurons and in a rat pheochromocytoma PC12 cell line. The ligand and receptor specificity, and role of the low-affinity neurotrophin receptor (p75NTR) in the potentiation response induced by K-252b, are unknown. To address the issues of ligand and receptor specificity of K-252b potentiation, we have examined neurotrophin-induced DNA synthesis ([3H]thymidine incorporation) in NIH3T3 cells expressing trkA, trkB, or trkC . Neither NT-3 nor K-252b alone could stimulate mitogenic activity in the trkA -overexpressing clone. However, coaddition of K-252b (EC50 of ∼2 n M ) with 10–100 ng/ml NT-3 led to incorporation of [3H]thymidine in trkA expressing cells to a level induced by optimal concentrations of nerve growth factor (NGF). The K-252b- and NT-3-induced [3H]thymidine incorporation correlated with an increase in the tyrosine autophosphorylation of the trkA receptor as well as tyrosine phosphorylation of trk -associated phospholipase C-γ1 and SH2-containing proteins. K-252b did not potentiate submaximal doses of NGF, or maximal doses of brain-derived neurotrophic factor (BDNF) or neurotrophin-4/5 (NT-4/5) in trkA -expressing cells. Furthermore, K-252b did not potentiate DNA synthesis by submaximal doses of BDNF, NT-4/5, or NT-3 in trkB - or trkC -expressing NIH3T3 cells, suggesting that the potentiation profile for K-252b was specific for NT-3 in trkA -expressing cells. We found no expression of p75NTR in the trk -expressing NIH3T3 cells. This is the first demonstration that K-252b potentiates a trkA -mediated biological nonneuronal response by NT-3 that occurs independent of p75NTR and appears to be both ligand and receptor specific.  相似文献   

4.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

5.
Previous studies have found that increased expression of Nav1.9 and protein kinase C (PKC) contributes to pain hypersensitivity in a couple of inflammatory pain models. Here we want to observe if PKC can regulate the expression of Nav1.9 in dorsal root ganglion (DRG) in rheumatoid arthritis (RA) pain model. A chronic knee joint inflammation model was produced by intra-articular injection of the complete Freund's adjuvant (CFA) in rats. Nociceptive behaviors including mechanical, cold, and heat hyperalgesia were examined. The expression of Nav1.9 and PKCα in DRG was detected by a quantitative polymerase chain reaction, Western blot, and immunofluorescence. The in vitro and in vivo effects of a PKC activator (phorbol 12-myristate 13-acetate [PMA]) and a PKC inhibitor (GF-109203X) on the expression of Nav1.9 were examined. Moreover, the effects of PKC modulators on nociceptive behaviors were studied. Increased mechanical, heat, and cold sensitivity was observed 3 to 14 days after CFA injection. Parallel increases in messenger RNA and protein expression of Nav1.9 and PKCα were found. Immunofluorescence experiments found that Nav1.9 was preferentially colocalized with IB4+DRG neurons in RA rats. In cultured DRG neurons, PMA increased Nav1.9 expression while GF-109203X prevented the effect of PMA. PMA increased Nav1.9 expression in naïve rats while GF-109203X decreased Nav1.9 expression in RA rats. In naïve rats, PMA caused mechanical and cold hyperalgesia. On the other hand, GF-109203X attenuated mechanical and cold hyperalgesia in RA-pain model. Nav1.9 might be upregulated by PKCα in DRG, which contributes to pain hypersensitivity in CFA-induced chronic knee joint inflammation model of RA pain.  相似文献   

6.
Nerve Growth Factor (NGF) is a neurotrophic factor that prevents apoptosis in neuronal progenitor cells. In rat pheochromocytoma (PC12) cells, tyrosine kinase A receptor (TrkA) mediates neurotrophic or protective effects, while p75 neurotrophin receptor (p75NTR) functions as a death receptor. We have determined whether TrkA mediates any cytotoxic effect. Following serum deprivation, TrkA expression increased 2.2-fold and apoptosis began with expression of Bax proapoptotic protein. Application of NGF halved cell viability but this was reversed by K252a, the TrkA inhibitor. These results confirmed the paradoxical cytotoxic effect of neurotrophic NGF via TrkA in PC12 cells following serum deprivation.  相似文献   

7.
Binding of nerve growth factor (NGF) to the trkA tyrosine kinase receptor results in receptor homodimer formation, transphosphorylation, and kinase activation that supports neuronal differentiation and survival. We have shown previously that short-term exposure of PC12 cells to brain-derived neurotrophic factor or to C2-ceramide activates a signaling pathway that results in serine phosphorylation of the trkA intracellular domain and reduces the ability of trkA to respond to NGF. Here we demonstrate that extended C2-ceramide exposure dramatically increases NGF-induced trkA activation and further show that C2-ceramide augments trkA tyrosine phosphorylation even in the absence of neurotrophin. This increase in trkA receptor phosphotyrosine is reflected in increased activation of both Erk1 and Erk2 and of the catalytic subunit of phosphatidylinositol 3-kinase. The C2-ceramide-mediated increase in tyrosine phosphorylation is blocked completely by the trk kinase inhibitor K252A, indicating that this increase results from an effect of C2-ceramide on trkA kinase activity. Consistent with this, crosslinking studies show that C2-ceramide promotes the formation of active trkA receptor homodimers. Together, these data suggest that chronic C2-ceramide treatment increases trkA activation by altering properties of the plasma membrane, which favors the formation of trkA homodimers.  相似文献   

8.
In this study, we have examined the properties of synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons, placed in co-culture. We also examined the effect of the anti-hyperalgesic gabapentinoid drug pregabalin (PGB) at this pharmacologically relevant synapse. The main method used was electrophysiological recording of excitatory post synaptic currents (EPSCs) in DH neurons. Synaptic transmission between DRG and DH neurons was stimulated by capsaicin, which activates transient receptor potential vanilloid-1 (TRPV1) receptors on small diameter DRG neurons. Capsaicin (1 μM) application increased the frequency of EPSCs recorded in DH neurons in DRG-DH co-cultures, by about 3-fold, but had no effect on other measured properties of the EPSCs. There was also no effect of capsaicin in the absence of co-cultured DRGs. Application of PGB (100 μM) for 40-48 h caused a reduction in the capsaicin-induced increase in EPSC frequency by 57%. In contrast, brief preincubation of PGB had no significant effect on the capsaicin-induced increase in EPSC frequency. In conclusion, this study shows that PGB applied for 40-48 h, but not acute application inhibits excitatory synaptic transmission at DRG-DH synapses, in response to nociceptive stimulation, most likely by a presynaptic effect on neurotransmitter release from DRG presynaptic terminals.  相似文献   

9.
Genetic factors and nerve injury-induced changes of gene expression in sensory neurons are potential contributors to tactile allodynia, a neuropathic pain state manifested as hypersensitivity to innocuous mechanical stimulation. To uncover genes relevant to neuropathic allodynia, we analyzed gene expression profiles in dorsal root ganglia (DRG) of spinal nerve-ligated Harlan and Holtzman Sprague Dawley rats, strains with different susceptibilities to neuropathic allodynia. Using Affymetrix gene chips, we identified genes showing differential basal-level expression in these strains without injury-induced regulation. Of more than 8000 genes analyzed, less than 180 genes in each strain were regulated after injury, and 19-22% of that was regulated in a strain-specific manner. Importantly, we identified functionally related genes that were co-regulated post injury in one or both strains. In situ hybridization and real-time PCR analyses of a subset of identified genes confirmed the patterns of the microarray data, and the former also demonstrated that injury-induced changes occurred, not only in neurons, but also in non-neuronal cells. Together, our studies provide a global view of injury plasticity in DRG of these rat stains and support a plasticity-based mechanism mediating variations in allodynia susceptibility, thus providing a source for further characterization of neuropathic pain-relevant genes and potential pathways.  相似文献   

10.
Smith SB  Crager SE  Mogil JS 《Life sciences》2004,74(21):2593-2604
Mechanical allodynia, or hypersensitivity to tactile stimuli, is a frequent clinical symptom of neuropathy. Large interindividual differences have been observed in neuropathic pain, both in susceptibility to its development and in its severity. Identification of genetic factors relevant to this variability would be of obvious utility. Although many animal models of neuropathic pain following peripheral nerve injury have been developed, most involve intricate surgeries and are thus poorly suited for large-scale linkage mapping investigations in the mouse. Recently, a schedule of intraperitoneal injections of the chemotherapeutic agent, paclitaxel (Taxol(R)), has been shown to produce a long-lasting, bilateral neuropathy in the rat, featuring hypersensitivity to mechanical, thermal and cold stimuli. We present here a survey of the responses of 10 inbred mouse strains to paclitaxel injections. Virtually all strains developed statistically significant mechanical allodynia, with one strain, DBA/2J, exhibiting especially robust changes. Strain sensitivities to paclitaxel-induced mechanical allodynia were similar to those obtained previously using a surgical model of neuropathic pain, supporting our contention that genetic sensitivity to mechanical allodynia is independent of the precise mode of induction. Using sensitive DBA/2 mice and a resistant strain, C57BL/6J, for comparison, we further characterized the paclitaxel model in mice by examining cold allodynia and thermal hyperalgesia. Both strains displayed equivalent cold allodynia but neither strain developed thermal hyperalgesia. The present data confirm a genetic component in mechanical allodynia using this model, while dissociating mechanical hypersensitivity from other pain modalities.  相似文献   

11.
Chronic diabetic neuropathy is associated with peripheral demyelination and degeneration of nerve fibers. The mechanism(s) underlying neuronal injury in diabetic sensory neuropathy remain poorly understood. Recently, we reported increased expression and function of transient receptor potential vanilloid 1 (TRPV1) in large dorsal root ganglion (DRG) neurons in diabetic sensory neuropathy. In this study, we examined the effects of TRPV1 activation on cell injury pathways in this subpopulation of neurons in the streptozotocin-induced diabetic rat model. Large DRG neurons from diabetic (6–8 weeks) rats displayed increased oxidative stress and activation of cell injury markers compared with healthy controls. Capsaicin (CAP) treatment induced decreased labeling of MitoTracker Red and increased cytosolic cytochrome c and activation of caspase 3 in large neurons isolated from diabetic rats. CAP treatment also induced oxidative stress in large diabetic DRG neurons, which was blocked by pre-treatment with caspase or calpain inhibitor. In addition, both μ-calpain expression and calpain activity were significantly increased in DRG neurons from diabetic rats after CAP treatment. Treatment with capsazepine, a competitive TRPV1 antagonist, markedly reduced these abnormalities in vitro and prevented activation of cell injury in large DRG neurons in diabetic rats in vivo . These results suggest that activation of the TRPV1 receptor activates pathways associated with caspase-dependent and calpain-dependent stress in large DRG neurons in STZ-diabetic rats. Activation of the TRPV1 receptor may contribute to preferential neuronal stress in large DRG neurons relatively early in diabetic sensory neuropathy.  相似文献   

12.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   

13.
Selective vulnerability of particular groups of neurons is a characteristic of the aging nervous system. We have studied the role of neurotrophin (NT) signalling in this phenomenon using rat sympathetic (SCG) neurons projecting to cerebral blood vessels (CV) and iris which are, respectively, vulnerable to and protected from atrophic changes during old age. RT-PCR was used to examine NT expression in iris and CV in 3- and 24-month-old rats. NGF and NT3 expression in iris was substantially higher compared to CV; neither target showed any alterations with age. RT-PCR for the principal NT receptors, trkA and p75, in SCG showed increased message during early postnatal life. However, during mature adulthood and old age, trkA expression remained stable while p75 declined significantly over the same period. In situ hybridization was used to examine receptor expression in subpopulations of SCG neurons identified using retrograde tracing. Eighteen to 20 h following local treatment of iris and CV with NGF, NT3 or vehicle, expression of NT receptor protein and mRNA was higher in iris- compared with CV-projecting neurons from both young and old rats. NGF and NT3 treatment had no effect on NT receptor expression in CV-projecting neurons at either age. However, similar treatment up-regulated p75 and trkA expression in iris-projecting neurons from 3-month-old, but not 24-month-old, rats. We conclude that lifelong exposure to low levels of NTs combined with impaired plasticity of NT receptor expression are predictors of neuronal vulnerability to age-related atrophy.  相似文献   

14.
15.
Diabetic neuropathy is a common form of peripheral neuropathy, yet the mechanisms responsible for pain in this disease are poorly understood. Alterations in the expression and function of voltage-gated tetrodotoxin-resistant (TTX-R) sodium channels have been implicated in animal models of neuropathic pain, including models of diabetic neuropathy. We investigated the expression and function of TTX-sensitive (TTX-S) and TTX-R sodium channels in dorsal root ganglion (DRG) neurons and the responses to thermal hyperalgesia and mechanical allodynia in streptozotocin-treated rats between 4-8 weeks after onset of diabetes. Diabetic rats demonstrated a significant reduction in the threshold for escape from innocuous mechanical pressure (allodynia) and a reduction in the latency to withdrawal from a noxious thermal stimulus (hyperalgesia). Both TTX-S and TTX-R sodium currents increased significantly in small DRG neurons isolated from diabetic rats. The voltage-dependent activation and steady-state inactivation curves for these currents were shifted negatively. TTX-S currents induced by fast or slow voltage ramps increased markedly in neurons from diabetic rats. Immunoblots and immunofluorescence staining demonstrated significant increases in the expression of Na(v)1.3 (TTX-S) and Na(v) 1.7 (TTX-S) and decreases in the expression of Na(v) 1.6 (TTX-S) and Na(v)1.8 (TTX-R) in diabetic rats. The level of serine/threonine phosphorylation of Na(v) 1.6 and In Na(v)1.8 increased in response to diabetes. addition, increased tyrosine phosphorylation of Na(v)1.6 and Na(v)1.7 was observed in DRGs from diabetic rats. These results suggest that both TTX-S and TTX-R sodium channels play important roles and that differential phosphorylation of sodium channels involving both serine/threonine and tyrosine sites contributes to painful diabetic neuropathy.  相似文献   

16.
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.  相似文献   

17.
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.  相似文献   

18.
19.
ABSTRACT: Selective inhibition of GluN2B-containing NMDA receptor (GluN2BR) in spinal dorsal horn effectively alleviates inflammatory pain, suggesting the up-regulation of GluN2BR function involved in central sensitization. Previous studies have demonstrated that the increase in GluN2BR synaptic expression serves as a key step to enhance GluN2BR function after intradermal injection of Complete Freund's Adjuvant (CFA). Here, we showed that cAMP-dependent protein kinase (PKA) played an important role in redistributing GluN2BR at synapses, because inhibition of PKA activity impaired GluN2BR accumulation at post-synaptic density (PSD)-enriched fraction in CFA-injected mice, and direct stimulation of PKA in na?ve mice mimicked the effect of CFA by recruiting GluN2BR at PSD fraction to evoke pain sensitization. Analysis of PKA-initiated signalings unraveled that PKA was able to activate Src-family protein tyrosine kinases member Fyn, possibly by disrupting Fyn association with its inhibitory partner striatal-enriched protein tyrosine phosphatase 61. The active Fyn then promoted GluN2B phosphorylation at Tyr1472, a molecular event known to prevent GluN2BR endocytosis. As a result, pharmacological or genetic manipulation of Fyn activity greatly depressed GluN2BR accumulation at PSD-enriched fraction and ameliorated mechanical allodynia induced by PKA. Our data thus elucidated a critical role of PKA/Fyn/GluN2B signaling in triggering GluN2BR hyperfunction and pain hypersensitivity.  相似文献   

20.
Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号