首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Jahn CL  Prescott KE  Waggener MW 《Genetics》1988,120(1):123-134
In the hypotrichous ciliated protozoan Oxytricha nova, approximately 95% of the micronuclear genome, including all of the repetitive DNA and most of the unique sequence DNA, is eliminated during the formation of the macronuclear genome. We have examined the interspersion patterns of repetitive and unique and eliminated and retained sequences in the micronuclear genome by characterizing randomly selected clones of micronuclear DNA. Three major classes of clones have been defined: (1) those containing primarily unique, retained sequences; (2) those containing only unique, eliminated sequences; and (3) those containing only repetitive, eliminated sequences. Clones of type one and three document two aspects of organization observed previously: clustering of macronuclear destined sequences and the presence of a prevalent repetitive element. Clones of the second type demonstrate for the first time that eliminated unique sequence DNA occurs in long stretches uninterrupted by repetitive sequences. To further examine repetitive sequence interspersion, we characterized the repetitive sequence family that is present in 50% of the clones (class three above). A consensus map of this element was obtained by mapping approximately 80 phage clones and by hybridization to digests of micronuclear DNA. The repeat element is extremely large (approximately 24 kb) and is interspersed with both macronuclear destined sequences and eliminated unique sequences.  相似文献   

2.
Organization of the Euplotes crassus micronuclear genome   总被引:11,自引:0,他引:11  
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

3.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

4.
A repetitive element from the hypotrichous ciliate Stylonychia lemnae was characterized by restriction and hybridization analysis. This repetitive element is present in about 5,000–7,000 copies per haploid genome in the micronucleus and the macronuclear anlagen. Its DNA sequence is very conserved, but the length of the repetitive sequence blocs is variable. In some cases, it is associated with telomeric sequences and macronucleus–homologous sequences. Restriction analysis of genomic micronuclear and macronuclear anlagen DNA and in situ hybridization showed that the repetitive sequences are amplified during the formation of polytene chromosomes. They are localized in many bands of the polytene chromosomes and are eliminated during the degradation of the polytene chromosomes. Possible functions of the repetitive sequences during macronuclear differentiation are discussed. Dev. Genet. 21:201–211, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

5.
Three clones of non-repetitive sequences and six clones containing repetitive sequences were obtained from micronuclear DNA of Tetrahymena thermophila. All the non-repetitive and three repetitive sequences had the same organization in micro- and macronuclear DNAs as revealed by blot hybridization. On the other hand, the remaining three clones with repetitive sequences had apparently different organization in the two nuclear DNAs. All these repetitive sequences showed a smear on the blot in addition to a number of discrete bands when micronuclear DNA was digested with EcoR I. In macronuclear DNAs, these sequences invariably became one or two bands and the smear disappeared. We conclude that, when a macronucleus develops from a micronucleus, the non-repetitive sequences amplify by more than 20 times with relatively few rearrangement, whereas some selected portions of repeated and/or repeat-contiguous sequences are amplified with rather extensive reorganization.  相似文献   

6.
Approximately 20,000 different short, linear, macronuclear DNA molecules are derived from micronuclear sequences of Oxytricha fallax after conjugation. These macronuclear DNAs are terminated at both ends by 20 base pairs of the sequence 5'-dC4A4-3'. Sequences homologous to this repeat (C4A4+) are also abundant in the micronuclear chromosomes, but most reside at their telomeres. Here we show that nontelomeric C4A4 clusters of 20 base pairs or longer exist in only a few hundred copies per micronuclear genome. This demonstrates that nearly none of the 20,000 sequence blocks of micronuclear DNA destined to be macronuclear DNA molecules can be flanked by full-length (20-base pair) C4A4 clusters, and therefore C4A4 repeats must be added to most, if not all, macronuclear telomeres during macronuclear development. Six internal micronuclear C4A4+ loci were cloned, and their structural relationships with macronuclear and micronuclear sequences were examined. The possible origins and functions of these rare, micronuclear internal C4A4 loci are discussed.  相似文献   

7.
The 81-MAC family consists of three sizes of macronuclear chromosomes in Oxytricha fallax. Clones of these and of micronuclear homologs have been classified according to DNA sequence into three highly homologous (95.9-97.9%), but distinct versions. Version A is represented by a micronuclear clone and by clones of two different-sized macronuclear chromosomes, showing that alternate processing of micronuclear DNA is responsible for the variety of sizes of macronuclear chromosomes. Three Internal Eliminated Sequences (IES's) are demonstrated in Version A micronuclear DNA. Two have been sequenced and show short, flanking direct repeats but no inverted terminal repeats. Version C micronuclear DNA has interruptions in the macronuclear homology which correspond closely to the Version A IES's. Whether they are true IES's is unknown because no Version C macronuclear DNA has been demonstrated. Version C micronuclear DNA may be "macronuclear-homologous" but "micronucleus-limited" and not "macronucleus-destined." Version B is represented by macronuclear DNA clones, but no micronuclear clones. Vegetative micronuclear aneuploidy is suggested. The possible role of micronuclear defects in somatic karyonidal senescence is discussed in light of the precise macronuclear chromosome copy controls demonstrated within the 81-MAC family. These controls apparently operate throughout karyonidal life to maintain 1) a constant absolute amount of 81-MAC sequences in the macronucleus and 2) a constant stoichiometry within the family, both according to version and chromosome size.  相似文献   

8.
The sequence similarity and functional equivalence of telomeres from macronuclear linear DNA molecules in Oxytricha and telomeric sequences of true mitotic/meiotic chromosomes suggest that the (C4A4)n/(G4T4)n sequences found at macronuclear telomeres may also function as micronuclear telomeres in Oxytricha. In this study, radioactively labeled (C4A4)n have been hybridized to micronuclear DNA samples that have been treated with the enzyme Bal31, which has double-stranded exonuclease activity. A time course of digestion shows that approximately 50% of the micronuclear sequences that hybridize to a C4A4 probe disappear with mild digestion by Bal31, suggesting that these sequences are telomeric. The remainder of the hybridizing sequences are not degraded any more rapidly than the total genomic DNA. All of the C4A4/G4T4 sequences that can be detected by hybridization of C4A4 probes to Southern-blotted restriction enzyme digests of micronuclear DNA occur in regions of the genome that are highly resistant to restriction enzyme digestion and show a clustering of sites reminiscent of telomeres in other organisms. We propose that the micronuclear C4A4 hybridizable sequences that are Bal31 resistant may be located near the telomere and within telomere-associated repetitive sequences that are immediately internal to telomeric (Bal31 sensitive) C4A4 hybridizeable sequences.  相似文献   

9.
Tetrahymena micronuclear DNA fragments have been cloned in the plasmid pBR322. One clone, pTt 2512, has been found to contain the C-C-C-C-A-A hexanucleotide repeat which is also present in the macronuclear rDNA. Further restriction enzyme digestion and hybridization studies suggest that the clone also contains sequences that are not present in the somatic macronucleus. The flanking sequences of the C4A2 repeats in this clone were separated into four restriction fragments, one from one side and three from the other. These fragments were used as probes for Southern hybridization to study the organizations of similar sequences in the macronucleus and micronucleus. All four fragments hybridized to many fragments of restriction enzyme digested micronuclear DNA. However, none of these hybridizations were detected in the macronucleus. Thus, these families of repetitive DNA are completely eliminated from the macronucleus. Further analysis suggested that the four different sequences may be linked at other locations of the genome. Using nullisomic strains of Tetrahymena, it is found that at least one of these sequences is present in more than one chromosome. Studies of various normal and star strains of Tetrahymena suggest that these sequences are stable in the normal micronucleus but are altered drastically in the defective micronuclei of the star strains. Eliminated DNA of similar nature has also been found in at least five other randomly selected clones of micronuclear DNA and may be present widely in the genome.  相似文献   

10.
The 81-MAC family consists of three sizes of macronuclear chromosomes in Oxytricha fallax. Clones of these and of micronuclcar homologs have been classified according to DNA sequence into three highly homologous (95.9–97.9%), but distinct versions. Version A is represented by a micronuclear clone and by clones of two different-sized macronuclear chromosomes, showing that alternate processing of micronuclear DNA is responsible for the variety of sizes of macronuclcar chromosomes. Three Internal Eliminated Sequences (IES's) are demonstrated in Version A micronuclcar DNA. Two have been sequenced and show short, flanking direct repeats but no inverted terminal repeats. Version C micronuclear DNA has interruptions in the macronuclear homology which correspond closely to the Version A IES's. Whether they are true IES's is unknown because no Version C macronuclear DNA has been demonstrated. Version C micronuclear DNA may be “macronuclear-homologous” but “micronucleus-limited” and not “macronucleusdestined.” Version B is represented by macronuclear DNA clones, but no micronuclear clones. Vegetative micronuclear aneuploidy is suggested. The possible role of micronuclear defects in somatic karyonidai senescence is discussed in light of the precise macronuclear chromosome copy controls demonstrated within the 81-MAC family. These controls apparently operate throughout karyonidai life to mairitain 1) a constant absolute amount of 81-MAC sequences in the macronuclcus and 2) a constant sioichiometry within the family, both according to version and chromosome size.  相似文献   

11.
12.
Following the sexual phase of its life cycle, the hypotrichous ciliate Oxytricha nova transforms a copy of its chromosomal micronucleus into a macronucleus containing short, linear DNA molecules with an average size of 2.2 kilobase pairs. In addition, more than 90% of the DNA sequences in the micronuclear genome are eliminated during this process. We have examined the organization of macronuclear DNA molecules in the micronuclear chromosomes. Macronuclear DNA molecules were found to be clustered and separated by less than 550 base pairs in two cloned segments of micronuclear DNA. Recombinant clones of two macronuclear DNA molecules that are adjacent in the micronucleus were also isolated and examined by DNA sequencing. The two macronuclear DNA molecules were found to be separated by only 90 base pairs in the micronuclear genome.  相似文献   

13.
A small family of DNA sequences is rearranged during the development of the somatic nucleus in Tetrahymena. The family is defined by 266 bp of highly conserved sequence which restriction mapping, hybridization and sequence analysis have shown is shared by a cloned micronuclear fragment and three sequences which constitute the macronuclear family. Genomic Southern hybridization experiments indicate there are five members of the family in micronuclear DNA. All of the family members are present in whole genome homozygotes and are therefore nonallelic. The three macronuclear sequences are all present in clonal cell lines and are reproducibly generated in every developing macronucleus. The rearrangement event begins 14 hours after conjugation is initiated and is nearly completed by 16 hours.  相似文献   

14.
M C Yao  J Choi  S Yokoyama  C F Austerberry  C H Yao 《Cell》1984,36(2):433-440
Elimination of specific DNA sequences occurs during macronuclear development in the ciliate Tetrahymena thermophila. Recombinant DNA clones containing a segment of micronuclear (germinal) DNA involved in elimination and the corresponding segment of macronuclear (somatic) DNA produced after elimination were isolated. Detailed comparisons of the cloned DNAs, as well as the genomic DNAs, by hybridization indicated that DNA elimination is accompanied by specific DNA rearrangements. In this 9.5 kb region three defined DNA segments are deleted and the remaining sequences are linked together as one contiguous piece in the macronucleus. Specific DNA rearrangement of this kind occurs widely in the genome. Analysis of 20 randomly selected DNA clones suggests that there are more than 5000 such rearrangement sites in the genome. Thus specific breakage and rejoining of DNA occurs extensively during development, and might play an essential role in nuclear differentiation.  相似文献   

15.
After mating, hypotrichous ciliated protozoa transform a set of their micronuclear chromosomes into thousands of short, linear DNA molecules that form the macronuclear genome. To examine micronuclear genome organization in the hypotrich Euplotes crassus, we have analyzed two cloned segments of micronuclear DNA as well as the macronuclear DNA molecules that are derived from them. E. crassus was found to display a number of features characteristic of other hypotrich genomes, including (i) clustering and close spacing of the precursors of macronuclear DNA molecules, (ii) the frequent occurrence of internal eliminated sequences within macronuclear precursors, (iii) overlapping macronuclear precursors, (iv) lack of telomeric repeats at the ends of macronuclear precursors, and (v) alternative processing of the micronuclear chromosome to yield multiple macronuclear DNA molecules. In addition, a moderately repetitive, transposonlike element that interrupts the precursors of two macronuclear DNA molecules has been identified and characterized. This transposonlike element, designated Tec1, is shown to be reproducibly removed from one of the macronuclear precursors during independent episodes of macronuclear development.  相似文献   

16.
J Scott  C Leeck    J Forney 《Nucleic acids research》1994,22(23):5079-5084
The micronuclear DNA of Paramecium contains sequences that are precisely excised during the formation of the macronuclear (somatic) genome. In this paper we show that four eliminated sequences ranging in size from 28 to 416 base pairs, are present in or near the micronuclear copy of the B surface protein gene. Each excised sequence is bounded by the dinucleotide 5'-TdA-3'. Comparison of the micronuclear B gene with the previously determined micronuclear sequence of the A surface protein gene shows that although the positions of at least three of the eliminated sequences are conserved in both genes, the sequences are highly divergent. Transformation of vegetative macronuclei with fragments of the micronuclear B gene results in replication and maintenance of the DNA, but the micronuclear specific sequences are not removed. Previous studies have shown that the correct incorporation of the B gene into the new macronucleus requires copies of the macronuclear B gene in the old macronucleus. Using macronuclear transformation, we show that the micronuclear B gene can substitute for the macronuclear B gene with regard to its role in DNA processing. This suggests that the macronuclear DNA is not acting as a guide for the excision of the micronuclear specific sequences.  相似文献   

17.
The macronucleus of the protozoan Oxytricha fallax is generated from a micronucleus following conjugation. While the micronucleus contains high molecular weight DNA, the macronucleus contains only short linear DNA molecules which all end in the same 20 bp inverted terminal repeat (Ma-ITR). The Ma-ITR was radioactively labeled and purified for use as a probe in hybridizations to micronuclear and macronuclear DNA. Sequences homologous to the Ma-ITR were detected in micronuclear DNA. The copy number of the repeat in the micronuclear genome is approximately that required to encode the macronuclear DNA termini. The micronuclear copies are found embedded in repeated long sequence blocks.  相似文献   

18.
The ciliated protozoa exhibit nuclear dimorphism. The genome of the somatic macronucleus arises from the germ-line genome of the micronucleus following conjugation. We have studied the fates of highly repetitious sequences in this process. Two cloned, tandemly repeated sequences from the micronucleus of Oxytricha fallax were used as probes in hybridizations to micronuclear and macronuclear DNA. The results of these experiments show: (1) the cloned repeats are members of two apparently unrelated repetitious sequence families, which each appear to comprise a few percent of the micronuclear genome, and (2) the amount of either family in the macronuclei from which our DNA was prepared is about 1/15 that found in an equal number of diploid micronuclei. Most, if not all, of the apparent macronuclear copies of these repeats can be accounted for by micronuclear contamination, which strongly suggests that these sequences are eliminated from the macronuclei and have no vegetiative function.  相似文献   

19.
P P Ueng  A Hang  H Tsang  J M Vega  L Wang  C S Burton  F T He  B Liu 《Génome》2000,43(3):556-563
A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of lambda wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some lambda wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.  相似文献   

20.
DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. The presence of inverted repeated sequences was clearly demonstrated in one of them by electron microscopy. DNA sequence analysis showed that the left portion of this clone contains three tandem, directly repeated copies of a 340-bp sequence, a 120-bp portion of which appears in inverted orientation at a 1.6-kb distance. This clone, pTtFB1, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. We found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat, one in the "loop" and one in the "right flanking region," are totally eliminated during macronuclear development--and contain open reading frames. A fourth family occurs in the "loop" region and is rearranged extensively during development. The two gene families that are eliminated are stable in the micronuclear genome but are not clustered together as evidenced by experiments in which DNAs from nullisomic strains are used to map family members to specific micronuclear chromosomes. The inverted repeat family is also stable in the micronuclear genome and is dispersed among several chromosomes. The significance of retained inverted repeats to the process of elimination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号