首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Calcium binding epidermal growth factor-like domains (cbEGFs) are present in many extracellular proteins, including fibrillin-1, Notch-3, protein S, factor IX and the low density lipoprotein (LDL) receptor, which perform a diverse range of functions. Genetic mutations that cause amino acid changes within these proteins have been linked to the Marfan syndrome (MFS), CADASIL, protein S deficiency, haemophilia B and familial hypercholesterolaemia, respectively. A number of these mutations disrupt calcium binding to cbEGFs, emphasising the critical functional role of calcium in these proteins.We have determined the calcium binding affinity of two sites within a cbEGF pair (cbEGF12-13) from human fibrillin-1 using two-dimensional nuclear magnetic resonance (NMR) and fluorescence techniques. Fibrillin-1 is a mosaic protein containing 43 cbEGF domains, mainly arranged as tandem repeats. Our results show that the cbEGF13 site in the cbEGF12-13 pair possesses the highest calcium affinity of any cbEGF investigated from fibrillin-1. A comparative analysis of these and previously reported calcium binding data from fibrillin-1 demonstrate that the affinity of cbEGF13 is enhanced more than 70-fold by the linkage of an N-terminal cbEGF domain. In contrast, comparison of calcium binding by cbEGF32 in isolation relative to when linked to a transforming growth factor beta-binding protein-like domain (TB6-cbEGF32) reveals that the same enhancement is not observed for this heterologous domain pair. Taken together, these results indicate that fibrillin-1 cbEGF Ca2+ affinity can be significantly modulated by the type of domain which is linked to its N terminus. The cbEGF12-13 pair is located within the longest contiguous section of cbEGFs in fibrillin-1, and a number of mutations in this region are associated with the most severe neonatal form of MFS. The affinities of cbEGF domains 13 and 14 in this region are substantially higher than in the C-terminal region of fibrillin-1. This increased affinity may be important for fibrillin assembly into 10-12 nm connective tissue microfibrils and/or may contribute to the biomechanical properties of the microfibrillar network.  相似文献   

2.
Calcium-binding epidermal growth factor (EGF)-like modules are found in numerous extracellular and membrane proteins involved in such diverse processes as blood coagulation, lipoprotein metabolism, determination of cell fate, and cell adhesion. Vitamin K-dependent protein S, a cofactor of the anticoagulant enzyme activated protein C, has four EGF-like modules in tandem with the three C-terminal modules each harbouring a Ca(2+)-binding consensus sequence. Recombinant fragments containing EGF modules 1-4 and 2-4 have two Ca(2+)-binding sites with dissociation constants ranging from 10(-8) to 10(-5) M. Module-module interactions that greatly influence the Ca(2+) affinity of individual modules have been identified. As a step towards an analysis of the structural basis of the high Ca(2+) affinity, we expressed the Ca(2+)-binding EGF pair 3-4 from human protein S. Correct folding was shown by (1)H NMR spectroscopy. Calcium-binding properties of the C-terminal module were determined by titration with chromophoric chelators; binding to the low-affinity N-terminal site was monitored by (1)H-(15)N NMR spectroscopy. At physiological pH and ionic strength, the dissociation constants for Ca(2+) binding were 1.0x10(-6) M and 4. 8x10(-3) M for modules 4 and 3, respectively, i.e. the calcium affinity of the C-terminal site was about 5000-fold higher than that of the N-terminal site. Moreover, the Ca(2+) affinity of EGF 4, in the pair 3-4, was about 9000-fold higher than that of synthetic EGF 4. The EGF modules in protein S are known to mediate the interaction with factor Xa. We have now found modules 3-4 to be involved in this interaction. However, the individual modules 3 and 4 manifested no measurable activity.  相似文献   

3.
Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.  相似文献   

4.
Fibrillin-1 is a mosaic protein mainly composed of 43 calcium binding epidermal growth factor-like (cbEGF) domains arranged as multiple, tandem repeats. Mutations within the fibrillin-1 gene cause Marfan syndrome (MFS), a heritable disease of connective tissue. More than 60% of MFS-causing mutations identified are localized to cbEGFs, emphasizing that the native properties of these domains are critical for fibrillin-1 function. The cbEGF12-13 domain pair is within the longest run of cbEGFs, and many mutations that cluster in this region are associated with severe, neonatal MFS. The NMR solution structure of Ca(2+)-loaded cbEGF12-13 exhibits a near-linear, rod-like arrangement of domains. This observation supports the hypothesis that all fibrillin-1 (cb)EGF-cbEGF pairs, characterized by a single interdomain linker residue, possess this rod-like structure. The domain arrangement of cbEGF12-13 is stabilized by additional interdomain packing interactions to those observed for cbEGF32-33, which may help to explain the previously reported higher calcium binding affinity of cbEGF13. Based on this structure, a model of cbEGF11-15 that encompasses all known neonatal MFS missense mutations has highlighted a potential binding region. Backbone dynamics data confirm the extended structure of cbEGF12-13 and lend support to the hypothesis that a correlation exists between backbone flexibility and cbEGF domain calcium affinity. These results provide important insight into the potential consequences of MFS-associated mutations for the assembly and biomechanical properties of connective tissue microfibrils.  相似文献   

5.
Binding Ca2+ to a high affinity site in protein C and 4-carboxyglutamic acid (Gla)-domainless protein C results in a conformational change that is required for activation by the thrombin-thrombomodulin complex, the natural activator of protein C. It has been hypothesized that this high affinity Ca(2+)-binding site is located in the NH2-terminal epidermal growth factor (EGF) homology region of protein C. We have expressed in human 293 cells a deletion mutant of protein C (E2-PD) which lacks the entire Gla region as well as the NH2-terminal EGF homology region of protein C. Ca2+ inhibits activation of E2-PD or Gla-domainless protein C by thrombin with half-maximal inhibition occurring at Ca2+ concentrations of 103 +/- 11 and 70 +/- 7 microM, respectively, but is required for both E2-PD and Gla-domainless protein C activation by the thrombin-thrombomodulin complex with half-maximal acceleration occurring at Ca2+ concentrations of 87 +/- 8 and 89 +/- 8 microM, respectively. Both E2-PD and Gla-domainless protein C exhibit a reversible, Ca(2+)- but not Mg(2+)-dependent decrease (6 +/- 1%) in fluorescence emission intensity with Kd = 38 +/- 3 microM Ca2+. We conclude that the high affinity Ca(2+)-binding site important for the activation of protein C is located outside of the NH2-terminal EGF homology region and that the metal-binding site in the NH2-terminal EGF homology region may not be a high affinity site in intact protein C.  相似文献   

6.
Protein S, a cofactor of anticoagulant activated protein C, exhibits three high-affinity Ca(2+)-binding sites in a region comprising four EGF modules. The EGF 3-4 module pair constitutes the smallest fragment that retains one high-affinity Ca(2+)-binding site and is therefore useful for investigation of the structural basis of the unusually high-affinity Ca(2+) binding compared to other EGF-containing proteins characterized so far. Extensive chemical shift effects caused by Ca(2+) binding to the EGF 3-4 module pair are observed, particularly from Ca(2+) binding to the high-affinity site in EGF 4. Ca(2+) binding to the high-affinity site in EGF 4 and the low-affinity site in EGF 3 is associated with slow and fast exchange on the NMR time-scale, respectively. We show the presence of two isoforms, characterized by a cis or trans Lys 167-Pro 168 peptide bond, that do not convert on time scales that were accessible to the experiments (k(ex) < 0.2 s(-1)). Both conformers have similar Ca(2+) affinities and backbone dynamics. Further, broadening of (1)H resonances involving residues in the major beta-sheet of EGF 3 and (15)N exchange terms, primarily in the N-terminal part of the protein, indicate the presence of slow exchange on a microsecond to millisecond time scale. (15)N spin relaxation data suggest that the module pair has a well-defined relative orientation between EGF modules 3 and 4 and has a significantly anisotropic rotational diffusion tensor in solution.  相似文献   

7.
Human fibrillin-1, the major structural protein of extracellular matrix (ECM) 10-12 nm microfibrils, is dominated by 43 calcium binding epidermal growth factor-like (cbEGF) and 7 transforming growth factor beta binding protein-like (TB) domains. Crystal structures reveal the integrin binding cbEGF22-TB4-cbEGF23 fragment of human fibrillin-1 to be a Ca(2+)-rigidified tetragonal pyramid. We suggest that other cbEGF-TB pairs within the fibrillins may adopt a similar orientation to cbEGF22-TB4. In addition, we have located a flexible RGD integrin binding loop within TB4. Modeling, cell attachment and spreading assays, immunocytochemistry, and surface plasmon resonance indicate that cbEGF22 bound to TB4 is a requirement for integrin activation and provide insight into the molecular basis of the fibrillin-1 interaction with alphaVbeta3. In light of our data, we propose a novel model for the assembly of the fibrillin microfibril and a mechanism to explain its extensibility.  相似文献   

8.
Apparent Ca(2+)-binding constant (K(app)) of Caenorhabditis elegans troponin C (CeTnC) was determined by a fluorescence titration method. The K(app) of the N-domain Ca(2+)-binding site of CeTnC was 7.9+/-1.6 x 10(5) M(-1) and that of the C-domain site was 1.2+/-0.6 x 10(6) M(-1), respectively. Mg(2+)-dependence of the K(app) showed that both Ca(2+)-binding sites did not bind competitively Mg(2+). The Ca(2+) dissociation rate constant (k(off)) of CeTnC was determined by the fluorescence stopped-flow method. The k(off) of the N-domain Ca(2+)-binding site of CeTnC was 703+/-208 s(-1) and that of the C-domain site was 286+/-33 s(-1), respectively. From these values we could calculate the Ca(2+)-binding rate constant (k(on)) as to be 5.6+/-2.8 x 10(8) M(-1) s(-1) for the N-domain site and 3.4+/-2.1 x 10(8) M(-1) s(-1) for the C-domain site, respectively. These results mean that all Ca(2+)-binding sites of CeTnC are low affinity, fast dissociating and Ca(2+)-specific sites. Evolutional function of TnC between vertebrate and invertebrate and biological functions of wild type and mutant CeTnCs are discussed.  相似文献   

9.
The calcium-binding epidermal growth factor-like (cbEGF) domain is a common structural motif in extracellular and transmembrane proteins. K(d) values for Ca2+ vary from the millimolar to nanomolar range; however the molecular basis for this variation is poorly understood. We have measured K(d) values for six fibrillin-1 cbEGF domains, each preceded by a transforming growth factor beta-binding protein-like (TB) domain. Using NMR and titration with chromophoric chelators, we found that K(d) values varied by five orders of magnitude. Interdomain hydrophobic contacts between TB-cbEGF domains were studied by site-directed mutagenesis and could be correlated directly with Ca2+ affinity. Furthermore, in TB-cbEGF pairs that displayed high-affinity binding, NMR studies showed that TB-cbEGF interface formation was strongly Ca2+-dependent. We suggest that Ca2+ affinity is a measure of interface formation in both homologous and heterologous cbEGF domain pairs, thus providing a measure of flexibility in proteins with multiple cbEGF domains. These data highlight the versatile role of the cbEGF domain in fine tuning the regional flexibility of proteins and provide new constraints for the organization of fibrillin-1 within 10-12-nm microfibrils of the extracellular matrix.  相似文献   

10.
Mutations in the fibrillin-1 gene (FBN1) cause Marfan syndrome (MFS), an autosomal dominant disorder of connective tissue with highly variable clinical manifestations. FBN1 contains 47 epidermal growth factor (EGF)-like modules, 43 of which display a consensus sequence for calcium binding (cbEGF). Calcium binding by cbEGF modules is thought to be essential for the conformation and stability of fibrillin-1. Missense mutations in cbEGF modules are the most common mutations found in MFS and generally affect one of the six highly conserved cysteines or residues of the calcium-binding consensus sequence. We have generated a series of recombinant fibrillin-1 fragments containing six cbEGF modules (cbEGF nos. 15-20) with various mutations at different positions of cbEGF module no. 17, which is known to contain a cryptic cleavage site for trypsin. A mutation affecting a residue of the calcium-binding consensus sequence (K1300E) found in a patient with relatively mild clinical manifestations of classic MFS caused a modest increase in susceptibility to in vitro proteolysis by trypsin, whereas a mutation affecting the sixth cysteine residue of the same cbEGF module (C1320S) reported in a severely affected patient caused a dramatic increase in susceptibility to in vitro proteolysis by trypsin. A mutation at the cryptic cleavage site for trypsin abolished sensitivity of wild-type fragments and fragments containing K1300E to trypsin proteolysis. Whereas the relevance of in vitro proteolysis to the in vivo pathogenesis of MFS remains unclear, our findings demonstrate that individual mutations in cbEGF modules can affect these modules differentially and may suggest an explanation for some genotype-phenotype relationships in MFS.  相似文献   

11.
Various human body fluids and secretions contain a soluble form of the epidermal growth factor (EGF) precursor. The EGF precursor molecule contains eight EGF modules in addition to EGF itself. Using monoclonal antibodies specific for the EGF modules 7 and 8, we have purified the soluble form of the EGF precursor from human urine to homogeneity. The protein was shown to have a molecular mass of about 160 kDa and the N-terminal sequence SAPNHWSXPE. EGF modules 2, 7 and 8 of the precursor have the consensus sequence for post-translational beta-hydroxylation of Asp/Asn residues. We identified the presence of erythro-beta-hydroxy-aspartic acid (Hya) in acid hydrolysates of the EGF precursor (2.4 M.M protein-1). As the DNA sequence encodes Asn in the corresponding position, the Hya represents erythro-beta-hydroxyasparagine (Hyn). The Hyn-containing modules have a consensus calcium-binding motif immediately N-terminal of the first Cys residue. The synthetic EGF module 2 (residues 356-395) of the EGF precursor was found to bind calcium with low affinity, Kd approximately 3.5 mM, i.e. similar to the affinity of other isolated calcium-binding EGF modules. EGF module 7, when part of the intact protein, was found to bind Ca2+ with a Kd approximately 0.2 microM, i.e. approximately 10(4)-fold higher than that of isolated EGF modules presumably due to the influence of neighboring modules. We have detected EGF precursor in platelet-rich plasma and demonstrated it to be associated to platelets. The platelets were found to have 30-160 EGF molecules each.  相似文献   

12.
Henzl MT  Agah S  Larson JD 《Biochemistry》2004,43(34):10906-10917
Association of the parvalbumin AB and CD-EF domains was examined in Hepes-buffered saline, pH 7.4, employing fragments from rat alpha and beta. All of the interactions require Ca(2+). In saturating Ca(2+), the alpha AB/alpha CD-EF (alpha/alpha) complex displays an association constant of (7.6 +/- 0.4) x 10(7) M(-1). Ca(2+)-binding data for a mixture of the alpha fragments are compatible with an identical two-site model, yielding an average binding constant of (8.5 +/- 0.2) x 10(5) M(-1). The beta/beta interaction is significantly weaker, exhibiting an association constant of (3.0 +/- 0.6) x 10(6) M(-1). The Ca(2+)-binding constants for beta/beta are likewise diminished, at (1.0 +/- 0.1) x 10(5) and (2.3 +/- 0.2) x 10(4) M(-1). The magnitude of the apparent DeltaDeltaG(degree)' for Ca(2+) binding by alpha/alpha and beta/beta, at 3.4 kcal/mol, approaches that measured for the intact proteins (3.6 kcal/mol) and is substantially larger than the 1.5 kcal/mol value previously measured for the isolated CD-EF domains. This result suggests that the AB domain can modulate the Ca(2+) affinities of the CD and EF sites. Interestingly, the heterologous alpha/beta complex displays a larger association constant [(6.6 +/- 0.4) x 10(6) M(-1)] than the homologous beta/beta complex and heightened Ca(2+) affinity [binding constants of (1.3 +/- 0.1) x 10(6) and (8.8 +/- 0.2) x 10(4) M(-1)]. By contrast, beta/alpha associates more weakly than alpha/alpha and exhibits sharply reduced affinity for Ca(2+). Thus, the interaction between the beta AB domain and beta CD-EF domain may act to attenuate Ca(2+) affinity in the intact protein.  相似文献   

13.
The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.  相似文献   

14.
Vitamin K-dependent protein S, which is a cofactor for activated protein C and thus important for down-regulation of the coagulation cascade, contains several Ca(2+)-binding sites with unusually high affinity. The 89 amino acid fragment constituting the third and fourth epidermal growth factor-like (EGF) modules of protein S is the smallest fragment that retains high-affinity Ca(2+) binding and is therefore useful for investigating the structural basis of this property. Heteronuclear multidimensional nuclear magnetic resonance experiments were used to obtain extensive assignments of the (1)H, 15N and (13)C resonances of the module pair with one Ca(2+) bound in EGF 4. In addition, nearly complete assignments of the (1)H resonances of the isolated Ca(2+)-free EGF 3 module were obtained. The assignment process was complicated by broadening of several resonances, spectral heterogeneity caused by cis-trans isomerisation of the peptide bond preceding Pro-168, and dimerisation. Analysis of weighted average secondary chemical shifts, (3)J(HNHalpha) coupling constants, and NOE connectivities suggest that both EGF modules in this fragment adhere to the classical secondary structure of EGF modules, consisting of one major and one minor anti-parallel beta-sheet.  相似文献   

15.
It is shown that glycoprotein from bovine heart mitochondria which forms Ca2+-selective conductance channels in a bilayer lipid membrane possesses Ca2+-binding activity. Ca2+-binding sites of two kinds were revealed in the glycoprotein molecule: high affinity sites with Kd = 2.8 X 10(-6) M and low affinity sites with Kd 1.1 X 10(-5) M. Ca2+-binding by the high affinity sites occurs co-operatively. The Hill coefficient is about 2.  相似文献   

16.
Vitamin K-dependent protein S is shown to contain four very high affinity Ca2(+)-binding sites. The number of sites and their affinities were determined from Ca2+ titration in the presence of the chromophoric chelator Quin 2. In 0.15 M NaCl, pH 7.5, the four macroscopic binding constants are K1 greater than or equal to 1 x 10(8) M-1, K2 = 3 +/- 2 x 10(7) M-1, K3 = 4 +/- 2 x 10(6) M-1, and K4 = 9 +/- 4 x 10(5) M-1. At low ionic strength, the corresponding values are K1 greater than or equal to 2 x 10(9) M-1, K2 = 9 +/- 4 x 10(8) M-1, K3 = 2 +/- 1 x 10(8) M-1, and K4 = 9 +/- 4 x 10(7) M-1. To localize the Ca2(+)-binding sites, protein S was subjected to proteolysis using lysyl endopeptidase. This yielded a 20-21-kDa fragment which comprised the third and fourth epidermal growth factor (EGF)-like domains and remained high affinity Ca2(+)-binding site(s). The susceptibility of the EGF-like domains to proteolysis increased when Ca2+ was removed from protein S indicating that the Ca2+ binding is important for the stability and/or conformation of the EGF domains. Three of the four EGF-like domains in protein S contain beta-hydroxyasparagine. In each of these domains there is a cluster of three or four negatively charged amino acid residues which are likely to contribute to the extraordinary high Ca2+ affinity. From sequence homology it is suggested that this novel type of high affinity Ca2(+)-binding site is present in several other proteins, e.g. in the EGF-like domains in the low sensity lipoproteins receptor, thrombomodulin, the Notch protein of Drosophila melanogaster, and transforming growth factor beta 1-binding protein.  相似文献   

17.
Most extracellular proteins consist of various modules with distinct functions. Mutations in one common type, the calcium-binding epidermal growth factor-like module (cbEGF), can lead to a variety of genetic disorders. Here, we describe as a model system structural and functional consequences of two typical mutations in cbEGF modules of fibrillin-1 (N548I, E1073K), resulting in the Marfan syndrome. Large (80-120 kDa) wild-type and mutated polypeptides were recombinantly expressed in mammalian cells. Both mutations did not alter synthesis and secretion of the polypeptides into the culture medium. Electron microscopy after rotary shadowing and comparison of circular dichroism spectra exhibited minor structural differences between the wild-type and mutated forms. The mutated polypeptides were significantly more susceptible to proteolytic degradation by a variety of proteases as compared with their wild-type counterparts. Most of the sensitive cleavage sites were mapped close to the mutations, indicating local structural changes within the mutated cbEGF modules. Other cleavage sites, however, were observed at distances beyond the domain containing the mutation, suggesting longer range structural effects within tandemly repeated cbEGF modules. We suggest that proteolytic degradation of mutated fibrillin-1 may play an important role in the pathogenesis of Marfan syndrome and related disorders.  相似文献   

18.
The calcium-binding epidermal growth factor-like (cbEGF) domain is a widely occurring module in proteins of diverse function. Amino acid substitutions that disrupt its structure or calcium affinity have been associated with various disorders. The extracellular portion of CRB1, the human homologue of Drosophila Crumbs, exhibits a modular domain organization that includes EGF and cbEGF domains. The N1317H substitution in the 19th cbEGF domain of CRB1 is associated with the serious visual disorder Leber congenital amaurosis. We have investigated the structure and Ca(2+) binding of recombinant wild-type and N1317H CRB1 fragments (EGF18-cbEGF19) using NMR and find that Ca(2+) binding is altered, resulting in disruption of long range interactions between adjacent EGF domains in CRB1. From these observations, we propose that this substitution affects the structural integrity of CRB1 in the inter-photoreceptor matrix of the retina, where it is expressed. Furthermore, we identify disease-causing substitutions in other cbEGF-containing proteins that are likely to result in similar disruption of interdomain packing, supporting the hypothesis that the tandem cbEGF domain linkages are critical for the structure and function of proteins containing cbEGF domains.  相似文献   

19.
Human fibrillin-1, an extracellular matrix glycoprotein, has a modular organization that includes 43 calcium-binding epidermal growth factor-like (cbEGF) domains arranged as multiple tandem repeats. A missense mutation that changes a highly conserved glycine to serine (G1127S) has been identified in cbEGF13, which results in a variant of Marfan syndrome, a connective tissue disease. Previous experiments on isolated cbEGF13 and a cbEGF13-14 pair indicated that the G1127S mutation caused defective folding of cbEGF13 but not cbEGF14. We have used limited proteolysis methods and two-dimensional NMR spectroscopy to identify the structural consequences of this mutation in a covalently linked cbEGF12-13 pair and a cbEGF12-14 triple domain construct. Protease digestion studies of the cbEGF12-13 G1127S mutant pair indicated that both cbEGF12 and 13 retained similar calcium binding properties and thus tertiary structure to the normal domain pair, because all identified cleavage sites showed calcium-dependent protection from proteolysis. However, small changes in the conformation of cbEGF13 G1127S, revealed by the presence of a new protease-sensitive site and comparative two-dimensional NOESY data, suggested that the fold of the mutant domain was not identical to the wild-type, but was native-like. Additional cleavage sites identified in cbEGF12-14 G1127S indicated further subtle changes within the mutant domain but not the flanking domains. We have concluded the following in this study. (i) Covalent linkage of cbEGF12 preserves the native-like fold of cbEGF13 G1127S and (ii) conformational effects introduced by G1127S are localized to cbEGF13. This study demonstrates that missense mutations in fibrillin-1 cbEGF domains can cause short range structural effects in addition to long range effects previously observed with a E1073K mutation in cbEGF12.  相似文献   

20.
Three classes of epidermal growth factor receptors on HeLa cells   总被引:5,自引:0,他引:5  
The kinetics of 125I-labeled epidermal growth factor (EGF) binding to receptors on HeLa cells were investigated. Scatchard analysis revealed the presence of 22,000 high affinity receptors (Kd = 0.12 nM) and 25,000 low affinity receptors per cell (Kd = 9.2 nM). The kinetic analysis of EGF binding to high affinity receptors was performed with cells pretreated with the monoclonal antibody 2E9, which prevents specifically EGF binding to low affinity receptors. The study of EGF binding to only low affinity receptors was performed with cells pretreated with the phorbol ester phorbol 12-myristate 13-acetate, which induces a conversion of high affinity receptors to low affinity receptors. This kinetic analysis of EGF binding to HeLa cells revealed the presence of three types of receptors. High affinity receptors were found to consist of one receptor type (type I) with a kinetic association constant (kass) of 6.2 x 10(5) M-1.s-1 and a kinetic dissociation constant (kdis) of 3.5 x 10(-4) s-1. The low affinity receptors were found to consist of two kinetic distinguishable sites: type II or fast sites with kass = 3.3 x 10(6) M-1.s-1 and kdis = 8.1 x 10(-3) s-1 and the type III or slow sites with kass = 3.2 x 10(4) M-1.s-1 and kdis = 1.6 x 10(-4) s-1. The regulatory mechanism which may determine the EGF binding characteristics is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号