首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feeding on natural plankton populations and respiration of thesmall cyclopoid copepod Oithona similis were measured duringthe warm season in Buzzards Bay, Massachusetts, USA. AlthoughO.similis did not significantly ingest small autotrophic andheterotrophic flagellates (2–8 µn), this copepodactively fed on >10 µm particles, including autotrophic/heterotrophic(dino)flagel-lates and ciliates, with clearance rates of 0.03–0.38ml animal–1 h–1. The clearance rates increased withthe prey size. O.similis also fed on copepod nauplii (mainlycomposed of the N1 stage of Acartia tonsa with a clearance rateof 0.16 ml animal–1 h–1. Daily carbon ration fromthe combination of these food items averaged 148 ng C animal–1day–1 (41% of body C day–1), with ciliates and heterotrophicdino-flagellates being the main food source ({small tilde}69%of total carbon ration). Respiration rates were 020–0.23µl O2 animal–1 day–1. Assuming a respiratoryquotient of 0.8 and digestion efficiency of 0.7, the carbonrequirement for respiration was calculated to be 125–143ng C animal–1 day–1, close to the daily carbon rationestimated above. We conclude that predation on ciliates andheterotrophic dinoflagellates was important for O.similis tosustain its population in our study area during the warm season.  相似文献   

2.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

3.
Daphnia can suppress ciliates and rotifers through predationand interference competition, but it is not known whether thisproduces any direct benefit to Daphnia. We conducted survivorshipand cohort lifetable experiments to determine whether Daphniacan utilize ciliates and rotifers as food. Three species ofoligotrich ciliates (Halteria grandinella, Strobilidium gyransand Strobilidiumvelox) and one rotifer (Keratella cochlearis)were used. Lifetable experiments were conducted with a basallevel of algae (Cryptomonas sp.), plus either ciliates or rotifers,while survivorship experiments had only the rotifers or ciliates.Densities of 30 H.grandinella ml–1, 50 S.gyrans ml–1and 15 S.velox ml–1 enhanced Daphnia pulex's populationgrowth rate 35–50% over controls with only algae. TenS.gyrans ml–1 did not produce a significant change inDaphnia's growth rate. Densities of 100 and 300 K.cochlearis–1 increased Daphnia population growth rates by II and10%, respectively. Both 10 and 50 S.gyrans ml–1 enhancedDaphnia's survivorship compared to starved controls, but neither100 nor 300 K.cochlearis l–1 enhanced its survivorship.The amount of enhancement of Daphnia growth rates by rotifersand ciliates is roughly proportional to the death rates imposedby Daphnia. The death rate imposed by Daphnia on rotifers isa function of both algal density and Daphnia size. Per unitbiomass, neither ciliates nor Keratella appear to be as nutritiousfor Daphnia as is Cryptomonas.  相似文献   

4.
Ingestion, respiration, and molting loss rates were measuredover the 3 – 29°C range in Neomysis intermedia. Weightspecific rates of these physiological processes ranged from2 to 140% body C day–1 for ingestion, from 2 to 15% bodyC day–1 for respiration, and from 0.1 to 5% body C day–1for molting loss. All weight-specific rates showed a logarithmicdecrease with a logarithmic increase in body weight, and a logarithmicincrease with a linear increase in temperature below 20 or 25°C.The effect of temperature, however, was different between thephysiological rates, with a large temperature dependency foringestion (Q10 = 2.6 –3.9) and molting loss (Q10 = 2.9– 3.6) and a moderate temperature dependency for respiration(Q10 = 1.9 – 2.1). Calculated assimilation efficiencychanged with body size, but was constant over the temperaturerange examined. Allocation of assimilated materials varied witha change in temperature, reflecting the different temperaturedependence between physiological processes. It was deduced thatthe strong temperature dependency of the growth rate in N. intermediaobserved in the previous studies resulted from the large temperatureeffect on ingestion and assimilation rates, superimposed bythe different allocation of assimilated materials. 1Present address: Department of Botany, University of Tokyo,Hongo, Tokyo 113, Japan  相似文献   

5.
The impact of fish-mediated changes on the structure and grazingof zooplankton on phytoplankton and bacterioplankton was studiedin Lake Søbygaard during the period 1984–92 bymeans of in vitro grazing experiments (14C-labelled phytoplankton,3H-labelled bacterioplankton) and model predictions. Measuredzooplankton clearance rates ranged from 0–25 ml l–1h–1 on phytoplankton to 0–33 ml l–1 h–1on bacterioplankton.The highest rates were found during thesummer when Daphnia spp. were dominant. As the phytoplanktonbiomass was substantially greater than that of bacterioplanktonthroughout the study period, ingestion of phytoplankton was26-fold greater than that of bacterioplankton. Multiple regressionanalysis of the experimental data revealed that Daphnia spp.,Bosmina longirostris and Cyclops vicinus, which were the dominantzooplankton, all contributed significantly to the variationin ingestion of phytoplankton, while only Daphnia spp. contributedsignificantly to that of bacterioplankton. Using estimated meanvalues for clearance and ingestion rates for different zooplankters,we calculated zooplankton grazing on phytoplankton and bacterioplanktonon the basis of monitoring data of lake plankton obtained duringa 9 year study period. Summer mean grazing ranged from 2 to4% of phytoplankton production and 2% of bacterioplankton productionto maxima of 53 and 88%, respectively. The grazing percentagedecreased with increasing density of planktivorous fish caughtin August each year using gill nets and shore-line electrofishing.The changes along a gradient of planktivorous fish abundanceseemed highest for bacterioplankton. Accordingly, the percentagecontribution of bacterioplankton to the total ingestion of thetwo carbon sources decreased from a summer mean value of 8%in Daphnia-dominated communities at lower fish density to 0.7–1.1%at high fish density, when cyclopoid copepods or Bosmina androtifers dominated. Likewise, the percentage of phytoplanktonproduction channelled through the bacteria varied, it beinghighest (5–8%) at high fish densities. It is argued thatthe negative impact of zooplankton grazing on bacterioplanktonin shallow lakes is highest at intermediate phosphorus levels,under which conditions Daphnia dominate the zooplankton community.  相似文献   

6.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

7.
Community respiration (R) was determined in Bransfield Straitfrom oxygen changes in water samples incubated in borosilicatebottles maintained at in situ temperature. The respiratory electrontransport system (ETS) activity of seawater communities wasalso measured from the same samples. Both data sets were relatedby the regression equation: log R (mg O2 m–3 day–1)=0.462+0.730xlogETS activity mg O2 m–3 day–1) (r=0.80, n=23). Fromthis equation and 37 ETS activity depth profiles, we calculatedthe integrated (0–100 m) community respiration as beingin the range 1.2–4.5 g O2 m–2 day–1 (mean=2.2).These values do not differ significantly from other publishedresults for the Arctic and Antarctic Oceans. Assuming a respiratoryquotient of unity, the areal respiration ranges between 0.45and 1.69 g C m–2 day–1 (mean=0.8). This would representan important sink for the primary production reported for BransStrait. The spatial distribution of community respiration showedhigher values associated with the warmer and phytoplankton-richwaters outflowing from Gerlache Strait into Bransfield Strait,and with the front that separates Bellingshausen Sea watersfrom Weddell Sea waters. We suggest that this pattern of distributionmay be related to the transport of organic matter by the BransfieldCurrent along the front.  相似文献   

8.
The juvenile growth rates and development times of subarcticCalanus marshallae and temperate/sub-tropical C. pacificus wereinvestigated during nine cruises (May through October, 2001–04)in the northern Gulf of Alaska. The artificial cohort methodbased on a length-weight regression was used for growth estimatesand the reciprocal of the molting rate for developmental time.The copepodite stage duration ranged from 3 to 16 days for C.marshallae (C1–C4) and 3–23 days for C. pacificus(C1–C5). Seasonally, copepodid growth rates increasedfrom May to October, ranging between 0.055 and 0.291 day–1(mean ± SE: 0.176 ± 0.008 day–1) for C.marshallae, while growth rates increased from August to Octoberbetween 0.018 and 0.296 day–1 (mean ± SE: 0.142± 0.016 day–1) for C. pacificus. After standardizationto 5°C (Q10 of 2.7), growth rate averaged 0.118 ±0.007 day–1 and 0.075 ± 0.009 day–1 for C.marshallae and C. pacificus, respectively. Calanus marshallaegrowth rate is satisfactorily described by a Michaelis–Mentenmodel using chlorophyll-a concentration (r2 = 0.33) after temperaturecorrection, but the prediction improves with a composite nonlinearmodel combining body weight into the Michaelis–Mentenfunction (r2 = 0.55). Considering the limited range of dataavailable for C. pacificus, the combination of the data forboth species suggests that C. pacificus has a similar functionalresponse to growth despite the differences in the geographicand temporal distributions with C. marshallae. Measured juvenilegrowth rates of the two Calanus species in this study were comparableto other calanoid species in the same area and showed reasonableagreement to Calanus growth models but less with global copepodgrowth models.  相似文献   

9.
Feeding and metabolism of the siphonophore Sphaeronectes gracilis   总被引:1,自引:0,他引:1  
The in situ predation rate of the siphonophore Sphaeronectesgracilis was estimated from gut content analysis of hand-collectedsiphonophores and from laboratory data on digestion rates ofprey organisms. At daytime prey densities of 0.25 copepods 1–1,S. gracilis was estimated to consume 8.1 – 15.4 prey day–1siphonophore–1. From data on abundances of siphonophoresand copepods, S. gracilis was estimated to consume 2–4%of the copepods daily. In laboratory experiments, ingestionrates averaged 13.8 prey day–1 siphonophore–1 atprey densities of 5 copepods 1–1 and 36.9 at 20 copeods1–1. This was equivalent to a specific ingestion rate(for both carbon and nitrogen) of –17% day–1 and45% day–1, respectively, while specific ingestion in situwas only 2% day–1. Ammonium excretion averaged 0.095 µg-atsiphonophore–1 day–1 at 5 prey 1–1, and 0.162at 20 prey 1–1. The specific respiration (carbon) andspecific excretion (nitrogen as ammonium) were calculated tobe 3% day–1 at the lower experimental food level, and5% day–1 at the higher food level. 1Contribution from the Catalina Marine Science Center No. 66. 2Present address: Dept. of Biology, University of Victoria,Victoria, B.C., Canada V8W 2Y2.  相似文献   

10.
The impact of a cyclopoid copepod population on the protozoacommunity (two ciliate categories and Cryptomonas) was assessedweekly during the spring cohort of Cyclops vicinus (one monthduration) in hypereutrophic Lake Søbygård by insitu gradient experiments with manipulation of ambient zooplanktonabundance. As C.vicinus always made up >92% of the zooplanktonbiomass, the response of protozoa is assumed to be a resultof predation by the copepod. Significant effects of copepodbiomass on protozoa net population growth rates were obtainedin the four experiments. Copepod clearance rates were significantlyhigher on oligotrichs than on prostomatids and Cryptomonas butdeclined for all three protozoa categories during the firstthree weeks of the copepod cohort, probably because of the changein developmental instar composition of the copepod population.Grazing impact on protozoa at ambient copepod abundance wasconsiderable (range, 0.05–0.87 day–1) and could,together with the estimated reproductive potential of protozoans(range, –0.20–0.87 day–1), account for thedecline in abundance and biomass of protozoa during the cohortdevelopment. Carbon flow from the protozoa to C.vicinus (range,2.8–23.5 µg C l–1 day–1) documents thepresence of a trophic link between protozoa and the spring cohortof C.vicinus in Lake Søbygård.  相似文献   

11.
Microplanktonic respiration rates were estimated in waters offthe coast of northern Chile (Antofagasta, 23°S) during ElNiño and pre-El Niño conditions. Three cruiseswere conducted during pre-El Niño summer (January/February1997), El Niño winter (July 1997) and El Niñosummer (January 1998). Oxygen consumption was estimated by theWinkler method using a semi-automatic photometric end-pointdetector. The ranges of microplanktonic respiration rates foundwere 0.11–21.15, 0.03–6.25 and 0.06–9.01 µmolO2 l–1 day–1 during pre-El Niño summer, ElNiño winter and El Niño summer, respectively.Significant differences were found between winter and summerrespiration rates (non-integrated and integrated). The meanintegrated respiration (mixed layer) for pre-El Niñosummer, El Niño winter and El Niño summer was95 ± 51 (SD) mmol O2 m–2 day–1, 50 ±23 (SD) mmol O2 m–2 day–1 and 63 ± 32 (SD)mmol O2 m–2 day–1, respectively. The strong seasonalsignal detected in microplanktonic integrated respiration inthe area seems to be characteristic of the pre-El Niño/ElNiño 1997–98 period. The integrated respirationrates found off Antofagasta are similar to reported values forthe upwelling area off Peru despite methodological differences.A positive significant correlation was found between respirationand water temperature (r = 0.76, P  相似文献   

12.
Spatial and seasonal egg production rates (Er) and egg hatchingsuccess in the copepods Calanus finmarchicus and Calanus helgolandicuswere measured in the North Sea from March to September. Foodavailability was monitored by chlorophyll and protist concentrationsand three size fractions of seston fatty acids. Seasonal andspatial distribution and production differed between the species.Calanus finmarchicus was found only offshore of the 50-m isobath,with decreasing Er (37–28 eggs female–1 day–1)from March to July. Calanus helgolandicus had two abundancepeaks, in spring and autumn, with a low in May during whichtime the highest Er were observed (38 eggs female–1 day–1).At other times, Er in C. helgolandicus remained lower than inC. finmarchicus (  相似文献   

13.
Growth and feeding rates of a laboratory-reared small thecateheterotrophic dinoflagellate, Protoperidinium hirobis Abè,grown on the diatom Leptocylindrus danicus, were measured inbatch cultures. Ingestion rates were determined directly bythe enumeration of empty diatom frustules produced by dinoflagellatefeeding. Both growth and feeding rates saturated at diatom concentrationsof {small tilde} 104 cells ml–1, and reached maximum valuesof 1.7 divisions day–1 and 23 diatoms grazer–1 day–1,respectively. This rate of cell division is notably high comparedto photosynthetic dinoflagellates, which seldom grow fasterthan 1 division day–1. A maximal clearance rate of 0.5µl h–1 was measured. Mean cell size varied proportionallywith food abundance, with food-saturated cells having doublethe mean volume of food-depleted cells. Tuning of cell divisionand grazing rate patterns were also examined; while mitosisoccurred chiefly during the dark period, no diel variationsin feeding rate were detected. These rates represent the firstdirect growth and ingestion measurements to be made for a thecateheterotrophic dinoflagellate. They serve to underscore one functionthese dinoflagellates perform within the microzooplanktonicfood web: that of transforming large diatoms into particlesmore easily ingested by microzooplankters.  相似文献   

14.
The in situ growth of the dominating pelagic organisms at severaltrophic levels was investigated during a spring bloom characterizedby well-mixed cold water. The study includes primary productionand the carbon flow through the nano-, micro- and mesozooplanktonpopulations based on population dynamics and specific growthrates. The phytoplankton biomass and production were totallydominated by small algae <20 µm. of which {small tilde}5%were <3µm. potentially a food source for the nano-and microzooplankton. The mean carbon-specific primary productionwas 0.15 day–1 and was regulated solely by light. Themean volume-based specific growth rate of bacterioplankton wasmodest. 0.1 day–1. and probably controlled by the lowtemperature. The volume-based specific growth rates of heterotrophicnanoflagellates. ciliates. rotifers and copepods were 0.35.0.13. 0.16 and 0.03 day–1, respectively. The observedgrowth of the heterotrophic plankton was generally not foodlimited, but was controlled by temperature. The stable temperatureduring the experiment therefore allows a cross-taxonomic comparisonof specific growth rates. The b exponent in the allometric relationship(G = aVth) between volume-specific growth rate (G) and individualbody size (V) was –0.15 ± 0.03 for all filtratingzooplankton. indicating an in situ scaling not far from thephysiological principles onginally demonstrated for laboratorypopulations.  相似文献   

15.
Sinking rates of heterogeneous, temperate phytoplankton populations   总被引:1,自引:0,他引:1  
Throughout the summer of 1978, the sinking rates of phytoplanktonwithin the Controlled Experimental Ecosystems (CEE's) were monitoredusing a technique based upon measurement of the transit timeof radioactively (14C) labeled cells. The experimental frameworkof FOODWEB 1 offered an unprecedented opportunity to documentthe sinking rates of heterogeneous phytoplankton of diversetaxonomic composition, growing under a variety of nutrient regimes;the absence of advective exchange in the CEE's provided knowledgeof the preconditioning history of the phytoplankton sampledat any given time. Sinking rates of whole phytoplankton assemblages (not size-fractioned)ranged from 0.32 – 1.69 m·day–1; the averagerate (± s.d.) observed was 0.64 ± 0.31 m·day–1.The most notable deviations from the mean value occurred whenthe population size distribution and taxonomic composition shifteddue to blooms. The relationship between phytoplankton sinkingand ambient nutrient levels was studied by following the ratesof a given size fraction (8–53 µm) for ten daysfollowing nutrient enrichment of a CEE. Over this time sinkingrates ranged from 1.08– 1.53 m·day–1; decreasedrates occurred after nutrification, yet over the course of theentire trial sinking rates were not significantly (p >0.05)correlated to the ambient levels of any single nutrient species. The sinking rate implications of spore formation were also studied,and showed that sinking rates of Chaetoceros constrictus andC. socialis spores (2.75 ± 0.61 m·day–1)were ca 5-fold greater than rates measured when the vegetativestages of these species dominated the population, reflectingthe influence of physiological mechanisms in controlling phytoplanktonbuoyancy. An example of the potential influence of colony formation uponbuoyancy was noted in observations of C. socialis which occasionallywas found to exist in large spherical configurations made ofcoiled cell chains and having low (0.40 m·day–1)sinking rates. A hydrodynamic rationale is presented to showhow such a colony together with enveloped water may behave asa unit particle having lower excess density, and therefore lowobserved sinking rate, despite its conspicuously large size. Overall, sinking rates were not significantly correlated withany of the measured nutrient or photic parameters. There were,however, trials and comparisons which showed evidence for: (1)higher sinking rates in populations dominated by large cells,(2) decreased sinking rates after nutrient enrichment, and (3)buoyancy response to light levels. It is suggested that correlationof sinking rates with synoptic environmental measurements atany given time is not explicit because the associations mayinvoke lag times of physiological response. The interpretationmade from these findings is that the preconditioning historyof the population, rather than the prevailing conditions atthe time of a given measurement, is most closely associatedwith population buoyancy modifications.  相似文献   

16.
Selectivity-size spectra, clearance and ingestion rates andassimilation efficiencies of Acartia clausi (Copepoda), Peniliaavirostris (Cladocera) and Doliolum denticulatum (Doliolida)from Blanes Bay (Catalan Sea, NW Mediterranean) were evaluatedin grazing experiments over a wide range of food concentrations(0.02–8.8 mm3 L–1 plankton assemblages from BlanesBay, grown in mesocosms at different nutrient levels). Acartiaclausi reached the highest grazing coefficients for large algae>70 µm (longest linear extension), P. avirostris forintermediate food sizes between 15 and 70 µm, and D. denticulatumfor small sizes from 2.5 to 15 µm. Penilia avirostrisand D. denticulatum acted as passive filter-feeders. Acartiaclausi gave some evidence for a supplementary raptorial feedingmode. Effective food concentration (EFC) decreased linearlywith increasing nutrient enrichment for D. denticulatum andfollowed domed curves for A. clausi and for P. avirostris withmaximum values at intermediate and high enrichment levels, respectively.Clearance rates of crustacean species showed curvilinear responseswith narrow modal ranges to increasing food concentration. Clearancerates of D. denticulatum increased abruptly and levelled intoa plateau at low food concentrations. Mean clearance rates were13.9, 25.5 and 64.1 mL ind.–1 day–1, respectively.No clearance could be detected for A. clausi at food concentrations<0.1 mm3 L–1 and for P. avirostris at food concentrations  相似文献   

17.
Two planktonic cyclopoid copepods (Tropocyclops prasinus andMesocyclops longisetus) were raised in the laboratory to obtainlife history information (duration of embryonic and post-embryonicdevelopment, reproductive performance, longevity, and stage-specificlength and weight values). Animals were maintained at 20 and25°C, and fed ad libitum. Development times were temperaturedependent when food was not limiting, with shorter periods ofembryonic and post-embryonic development and decreased longevityat 25°C. Laboratory data on the duration of developmentand biomass, together with population dynamics data obtainedin the field, were used to estimate summer and winter biomassand production of these species in a shallow reservoir, LagoaDourada, Brazil. The maximum production rate of T. prasinus,attained during summer, was 2.8 mg dry weight (DW) m–3day–1 and the highest daily production:biomass (P:B) ratiowas 0.29, whereas for M. longisetus the maximum production ratewas 1.4 mg DW m–3 day–1 and the highest daily P:Bratio was 0.39, in the winter. Over short time intervals (everyother day), there was great variability of the species productionrates. Species production rates were low compared to valuesreported in the literature for the same or other species ofequivalent sized copepods from both tropical and subtropicalregions.  相似文献   

18.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

19.
The vitamin B requirement of Phaeocystis globosa (Prymnesiophyceae)   总被引:1,自引:0,他引:1  
In batch cultures of flagellates and non-flagellate cells ofPhaeocystis globosa, the biomass yield was significantly enhancedby the addition of a mixture of the vitamins thiamine (B1),cyanocobalamin (B12) and biotin (H). A bioassay with B1 andB12 using the non-flagellate cells of P.globosa showed thatthis prymnesiophyte is a B1 auxotroph. The bioassay also indicateda significant difference in growth rate between culture mediumwith 10 nmol l–1 B1 (µ = 0.80 day–1) and culturemedium with 10 nmol l–1 B12 (µ = 0.52 day–1).These findings are discussed in relation to the hypothesis thatcentric diatoms, through vitamin B1 excretion or B12 depletion,initiate Phaeocystis blooms. It is concluded, however, thatan alternative hypothesis, that diatoms provide a solid substratefor colony initiation, has more experimental support.  相似文献   

20.
The growth rates of Appendicularia sicula, Fritillaria borealissargassi, Fritillaria haplostoma, Oikopleura dioica and Oikopleuralongicauda were determined from microcosms incubated in situat 23C in Jamaican waters. Experiments were conducted fromoligotrophic offshore waters, through mesotrophic Lime Cay andeutrophic Kingston Harbour in both natural and nutrient-enhancedphytoplankton communities. Length-weight relationships werecalculated for two of these species: O.longicauda log W=2.47log TL –6.10 and F.haplostoma log W=2.44 log TL –7.37,where weight (W) is in micrograms and trunk length (TL) is inmicrometres. Instantaneous growth rates averaged 1.7–2.5day–1 for the five species and were observed as high as3.3 day–1 These instantaneous rates are equivalent todaily specific growth rates averaging 4.6–11.4 and rangingup to 28. In larger genera, growth rates were related positivelyto picoplankton and nanoplankton concentration, and negativelyto the biomass of larvaceans, but in the smallest species growthwas unrelated to these factors. However, because the variabilityin these two factors within microcosms exceeded their naturalrange of variability, growth rates of larvaceans may normallybe unlimited by resources or population density effects. 1Present address :Monterey Bay Aquarium Research Institute 7700Sandholdt Road, Moss Landing, CA 95039-0628, USA 2Present address :Bedford Institute of Oceanography PO Box 1006,Dartmouth, Nova Scotia B2Y 4A2, Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号