首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary The relation of indoleacetic acid (IAA) transport to accumulation of auxin at the base of cuttings and to polar root formation was investigated with small cuttings from germinating embryos of Pinus lambertiana.The transport of endogenous auxin participates in regeneration of roots. This is shown by the facts that (1) more than 40% of the cuttings rooted without addition of exogenous indoleacetic acid; (2) the first regeneration always occurred at the basal tip of a slanting cut; and (3) 2,3,5-triiodobenzoic acid (TIBA), a specific inhibitor of auxin transport, totally inhibited rooting. Addition of IAA to the medium increased the number of roots formed per rooting hypocotyl.Sections of hypocotyls excised from dormant embryos and tested immediately after 2 h hydration were capable of polar transport of IAA. This polarity increased during the first 3 days of culture because of a marked increase in basipetal transport. Culturing the cuttings in 1 M IAA for 3–5 days doubled both the basipetal transport of 1-14C-IAA by hypocotyl segments and the accumulation of radioactivity at the base of cuttings.The extent of the accumulation at the base of cuttings was similar at early (2 days, first mitoses) and late stages (5 days, organized meristem) of regeneration and was not affected by removal of the regenerating region immediately prior to uptake and transport of 14C-IAA. The accumulation was inhibited by TIBA. In terms of increase in wet and dry weight and mitotic activity, the cotyledons rather than the regenerating root meristems were the most actively growing region of the cuttings. The upper part of the hypocotyl elongated more than the region of the slanting cut where regeneration was occurring.These results provide no support for the idea that the regenerating root controls the direction of polar transport by acting as a sink. The results are consistent with the view that polar auxin transport delivers auxin to the base of the cutting and raises the local concentration to levels sufficient to promote root formation.  相似文献   

2.
High irradiance during treatment of mung bean cuttings favours root formation in response to supplied auxin, whether the latter is IAA or IBA. On the other hand it is inhibitory towards root formation in the absence of supplied auxin. Light promotes the uptake of14C-IAA into cuttings and its upward movement into the leaves. When14C-IAA is applied to leaves of cuttings high irradiance favours movement of radioactivity into the epicotyl and hypocotyl. This movement is also enhanced by concomitant supply of IBA to the base of the cuttings. The irradiance under which stock plants are raised also affects the extent of root formation on cuttings. When cuttings are held in darkness without a supply of exogenous auxin they root best if prepared from seedlings raised under high irradiance. However, transport of14C-IAA out of leaves of cuttings is favoured when cuttings are prepared from seedlings grown under low irradiance. These observations are discussed in relation to auxin transport, photodestruction and, possibly, metabolism.  相似文献   

3.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

4.
To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10 % of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24 h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentose phosphate pathway.  相似文献   

5.
The effects of infection of root systems by Plasmodiophora brassicae on the translocation of 14C-labelled assimilates from the first and third leaves of cabbage seedlings were investigated. During the early phases of Plasmodium development, there were small differences in the distribution patterns of 14C-labelled assimilate between healthy and infected seedlings. At the end of growth of plasmodia and during resting spore formation, both first and third leaves exported more assimilates than corresponding leaves of healthy seedlings. When the infected roots were dissected into various regions after exposure of the fed leaves to 14CO2, more assimilate accumulated in the club root region than in any other part.  相似文献   

6.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

7.
Indole, -naphthol, pyrogallol, coumarin, and salicylic acidinteracted with the auxins, IAA (indol-3yl-acetic acid), NAA(naphth-lyl-acetic acid), and 2, 4-D (2, 4-dichlorophenoxyaceticacid), supplied to the basal ends of cuttings of Phaseolus vulgaris(L.), giving synergistic or antagonistic effects in root formation.Antagonism in rooting was always associated with increased accumulationof radiocarbon from carboxyl-14C-labelled auxins in the topsof the cuttings. Distribution of auxin over a greater lengthof the cutting was accompanied by a reduction in root formation.The chemicals which synergized auxin-induced root formationdid not promote accumulation of radiocarbon of the exogenouslyapplied labelled auxins in the upper parts of the cuttings.  相似文献   

8.
Effects of Flavonoids on the Polar Transport of Auxins   总被引:3,自引:0,他引:3  
The effect of some flavonoids on the polar transport of auxins was investigated in hypocotyl sections of dark grown seedlings of cucumber, Cucumis sativus L., by means of 14C labelled auxins. In experiments of 4–6 h duration quercitrin, morin, dihydroquercetin, naringin, sulfuretin and ferulic acid increased the polarity of the transport of indol-3yl-acetic acid (stimulation of basipetal, inhibition of acropetal transport). Naringenin, genistein and pinobanksin, on the other hand, decreased the polarity of this transport. For NAA no increase in the polarity of the transport could be observed, but all the substances tested inhibited the basipetal transport. There was no simple correlation between the effects on the polar transport and the effects on IAA oxidase.  相似文献   

9.
The variation of indole-3-acetic acid (IAA) transport along Lupinus albus L. hypocotyls was studied using decapitated seedlings and excised sections. To confirm that the mobile species was IAA and not IAA metabolites, dual isotope-labeled IAAs, [5-3H]IAA + [1-14C]IAA, were used. After apical application to decapitated seedlings, the longitudinal distribution of both isotopes at different transport periods showed that the velocity of IAA transport was higher in the apical, elongating region than in the basal, non-growing region. This variation in velocity was not a traumatic consequence of decapitation because after application of IAA to the basal region of decapitated seedlings, both the velocity and intensity of IAA transport were lower than in the apical treatment. The variation in IAA transport down the hypocotyl was confirmed when it was measured in excised sections located at different positions along the hypocotyl. The velocity and, to a greater extent, the intensity of IAA transport decreased from the apical to the basal sections. Consequently, if the amount of IAA reaching the apical zones of lupin hypocotyl were higher than the IAA transport capacity in the basal zones, accumulation of mobile IAA might be expected in zones located above the basal region. In fact, an IAA accumulation occurred in the elongating region during the first 4-h period of transport after apical treatment with IAA. It is proposed that the fall in IAA transport along the hypocotyl might be responsible for the IAA distribution and, consequently, for the growth distribution reported in this organ. An indirect proof of this was obtained from experiments that showed that the excision of the slowly transporting basal zones strongly reduced the growth in the remaining part of the organ, whereas excision of the root caused no significant modification in growth during a 20-h period.  相似文献   

10.
The origin and transport of the IAA responsible for rooting was studied in carnation (Dianthus caryophyllus L.) cuttings obtained from secondary shoots of the mother plants. The presence of mature leaves in the cuttings was essential for rooting. Removal of the apex and/or the youngest leaves did not reduce the rooting percentage as long as mature leaves remained attached. Removal of mature leaves inhibited rooting for a 24-day period during which the basal leaves grew and reached maturity. After this period rooting progressed as in intact cuttings. Auxin (NAA + IBA) applied to the stem base of defoliated cuttings was about 60% as effective as mature leaves in stimulating rooting. Application of NPA to the basal internode resulted in full inhibition of rooting. The view, deduced from these results, that auxin from mature leaves is the main factor controlling the rooting process was reinforced by the fact that mature leaves contained IAA and exported labelled IAA to the stem. The distribution of radioactivity after application of (5-3H)-IAA to mature leaves showed that auxin movement in the stem was basipetal and sensitive to NPA inhibition. The features of this transport were studied by applying 3H-IAA to the apical cut surface of stem sections excised from cuttings. The intensity of the transport was lower in the oldest node than in the basal internode, probably due to the presence of vascular traces of leaves. Irrespective of the localization of the sections and the carnation cultivar used, basipetal IAA transport was severely reduced when the temperature was lowered from 25 to 4 degrees C. The polar nature of the IAA transport in the sections was confirmed by the inhibition produced by NPA. Local application of IAA to different tissues of the sections revealed that polar auxin transport was associated with the vascular cylinder, the transport in the pith and cortex being low and apolar. The present results strongly support the conclusion that IAA originating from the leaves and transported in the stem through the polar auxin transport pathway was decisive in controlling adventitious rooting.  相似文献   

11.
Interactions affecting root formation by IAA and sucrose, supplied to Pinus lambertiana embryo cuttings through their cotyledons, were explored. The sucrose optimum for rooting and dry weight increase is approximately 8 %. Osmotic substitutes for sucrose, applied alone or concomitantly with sucrose, were unable to duplicate its effects on regeneration. One μM IAA increased the number of roots per cutting with all sucrose concentrations. However, with suboptimal sucrose concentrations it only increased the total number of cuttings forming roots. Because IAA accumulates at the site of root formation, the possibility that it mobilizes sucrose or its derivatives to the site of root formation was explored. No evidence was found for hormone-directed transport of sucrose in this system. IAA had no effect on either the basal accumulation or transport of label derived from U-14C-sucrose.  相似文献   

12.
Polar transport of the auxin indole-3-butyric acid (IBA) has recently been shown to occur in Arabidopsis (Arabidopis thaliana) seedlings, yet the physiological importance of this process has yet to be fully resolved. Here we describe the first demonstration of altered IBA transport in an Arabidopsis mutant, and show that the resistant to IBA (rib1) mutation results in alterations in growth, development, and response to exogenous auxin consistent with an important physiological role for IBA transport. Both hypocotyl and root IBA basipetal transport are decreased in rib1 and root acropetal IBA transport is increased. While indole-3-acetic acid (IAA) transport levels are not different in rib1 compared to wild type, root acropetal IAA transport is insensitive to the IAA efflux inhibitor naphthylphthalamic acid in rib1, as is the dependent physiological process of lateral root formation. These observed changes in IBA transport are accompanied by altered rib1 phenotypes. Previously, rib1 roots were shown to be less sensitive to growth inhibition by IBA, but to have a wild-type response to IAA in root elongation. rib1 is also less sensitive to IBA in stimulation of lateral root formation and in hypocotyl elongation under most, but not all, light and sucrose conditions. rib1 has wild-type responses to IAA, except under one set of conditions, low light and 1.5% sucrose, in which both hypocotyl elongation and lateral root formation show altered IAA response. Taken together, our results support a model in which endogenous IBA influences wild-type seedling morphology. Modifications in IBA distribution in seedlings affect hypocotyl and root elongation, as well as lateral root formation.  相似文献   

13.
Abstract

The excision of the root accelerates greatly the formation of adventitious roots in the hypocotyl of etiolated radish seedlings, but if the seedlings develop in CAP 1×10?4M, no adventitious root are induced after cutting. IAA either alone or associated with CAP, significantly increases the number of primordia in normal hypocotyls if given at the moment of cutting, while it has not stimulatory effect on the hypocotyls of seedlings grown in CAP. IAA has significant effect on both elongation and tickening of hypocotyl segments prepared from seedlings grown in CAP, and this could indicate a specific action of the inhibitor either on a particular process or on particular cells.

The endodermis and the pericycle, which are the two cell layers implicated in the formation of the adventitious roots, could be the mediators of this particular effect of CAP in rooting.  相似文献   

14.
Adventitious root formation in encumber hypocotyl cuttings was studied. Root formation was quantitatively related to the amount of the cotyledons attached to the hypocotyl. Complete removal of the cotyledons diminished root formation entirely. Hut the removal of the apical bud had no effect. Treatment of the hypocotyl with triiodobenzoic acid resulted in the inhibition of root formation. On t he other hand, IAA promoted root formation. Promoting concentration of IAA was 1 mg/1 for the cuttings with intact cotyledons and 10 mg/1 for those with l/8th of the cotyledons. The first two or three days of treatment was most effective. The presence of auxin (IAA-like. substance) in cucumber seedlings was demonstrated by paper chromatography and the pea straight test. It is concluded that the cotyledon is necessary for root formation in cucumber hypocotyl cuttings and that auxin is at least one of the factors supplied from the cotyledons.  相似文献   

15.
Labelled carbon dioxide was supplied for 22 hrs to a leaf of the leader or to the lateral shoot in two-year-old apple seedlings. The distribution of radioactive assimilates within the plant following this treatment was investigated by using radioautography. The transport of labelled assimilates from the young leaf of the leader was very meagre and affected only parts of the stem and the leaves situated in the close vicinity of the treated leaf. The14C-labelled assimilates from the mature leaf of the leader were transported in a considerable amount to the apex and to the other leaves of the leader. They were also found in an appreciable amount in the stem and the roots, as well as in some lateral shoots. After supplying14CO2 to the lateral shoot remarkable transport of labelled assimilates was observed. Radioactivity was detected in the tip and in the youngest leaves of the leader, as well as in the roots. Their path in the stem was studied by dissecting the plant and examining the cross section from each internode. This method revealed that the assimilates from the treated leaf or shoot were transported downward only on one side of the stem in a helical pattern. The lateral shoots situated on the radioactive side of the stem were also labelled, whereas those situated on the opposite (non-radioactive) side were not labelled.  相似文献   

16.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

17.
The present paper reports results of experiments to develop a system for studying adventitious root initiation in cuttings derived from seedlings. Hypocotyl cuttings of 2-week-old eastern white pine (Pinus strobus L.) seedlings were treated for 5 min with 0, 100, 200, 300, 400, 500 or 600 mg l?1 (0, 0.54, 1.07, 1.61, 2.15, 2.69 or 3.22 mM) 1-naphthaleneacetic acid (NAA) to determine the effect on root initiation. The number of root primordia per cutting was correlated with NAA concentration and the square of NAA concentration. Thus, the number increased from less than one per cutting in the 0 NAA treatment to approximately 40 per cutting at 300 mg l-1 NAA, above which no substantial further increase was observed. The larger number of root primordia formed in response to increasing concentrations of NAA was due to the formation of primordia over a larger proportion of the hypocotyls. Histological analysis of the timing of root primordium formation in hypocotyl cuttings revealed three discernible stages. Progression through these stages was relatively synchronous among NAA-treated hypocotyl cuttings and within a given cutting, but variation was observed in the portion of different cuttings undergoing root formation. Control-treated hypocotyl cuttings formed root primordia at lower frequencies and more slowly than NAA-treated cuttings, with fewer primordia per cutting. Epicotyl cuttings from 11-week-old seedlings also formed adventitious roots, but more slowly than hypocotyl cuttings. NAA treatment of epicotyl cuttings caused more rapid root initiation and also affected the origin of adventitious roots in comparison with nontreated cuttings. NAA-treated epicotyl cuttings formed roots in a manner analogous to that of the hypocotyl cuttings, directly from preformed vascular tissue, while control-treated epicotyl cuttings first formed a wound or callus tissue and subsequently differentiated root primordia within that tissue. This system of inducing adventitious roots in pine stem cuttings lends itself to studying the molecular and biochemical steps that occur during root initiation and development.  相似文献   

18.
The relationship between ethylene and adventitious root formation in mung bean hypocotyl cuttings was studied.Ethephon, an ethylene-releasing compound, at 5 x 10 -5 M increased root number and root dry weight on hypo-cotyl cuttings. When ethephon was applied to hypocotyl at different times after excision, there were two effectivetimes for root production i.e. between 06 h and 18-24 h. These two time periods correspond to the induction phase and the late initiation phase of root development, respectively. After excision, three peaks of ethylene productionwere observed. The first peak commencing at 6 h started the sequence of reactions leading root formation, the second peak appearing at 12 h coincided with the beginning of the increase of the IAA level during primordia initiation, and the third peak showing at 48 h played a role in root differentiation and growth. Ethylene stimulated rooting by enhancing the increase in auxins. Thus it appears that the IAA-induced ethylene production may be a factor involved in the stimulation of adventitious root formation.  相似文献   

19.
The role of ethylene and auxins in flood-induced adventitious root formation and hypocotyl hypertrophy in sunflower (Helianthus annuus L. cv. Russian) plants was studied. Flooding without aeration (F) resulted in a steady increase in ethylene in hypocotyls, and flooding with aeration (FA) caused a transient increase. Low light intensity increased ethylene levels but decreased adventitious root formation. Treatment of shoots with benzyladenine (BA) increased ethylene content in non-flooded (NF) but not in F or FA shoots. Twenty-four hours of flooding brought about a rise of endogenous indole-acetic acid (IAA) in hypocotyls. 14C-IAA applied to the shoot accumulated more in F and FA hypocotyls than in NF hypocotyls, and BA reduced this accumulation. There was less IAA metabolism in F and FA than in NF hypocotyls. Tri-iodo benzoic acid (TIBA) applied to the hypocotyls of F plants inhibited root production. Benzyladenine (BA) applied to the leaves had similar effect but was not effective when supplied to the shoot apex. BA did not inhibit flood-induced hypocotyl hypertrophy. Ethrel did not affect adventitious root formation in NF plants but did increase hypocotyl thickening. It is concluded that flood-induced adventitious root formation is stimulated primarily by an accumulation of auxins in the hypocotyls. Increases in ethylene might cause this auxin build up. Hypocotyl hypertrophy is presently thought to be the result of an interaction of auxin and ethylene with ethylene being the major factor.  相似文献   

20.
The transport and accumulation of 2-[14C]-IAA applied to the apex of cuttings of Pisum sativum L. cv. Alaska was greater in cuttings from stock plants grown under 38 W m−2 than 16 W m−2. Accumulation of 14C in the base of the cuttings from the highest level of irradiance was correspondingly more significant. The level of irradiance to the stock plants greatly affected the rate of accumulation, while the light conditions during IAA transport had a minor effect. The amount of IAA reaching the base of the cuttings increased with increasing concentration of IAA in the treatment solution, but the percentage of applied IAA reaching the base decreased.
The relative chromatographic partition of ethanol-extractable 14C showed that, after 12 h of IAA-transport, the amount of 2-[14C]-IAA was higher in the base of cuttings from 38 W m−2 than in those from 16 W m−2. After a further 12 h of transport the relative amounts of 2-[14C]-IAA in the two types of cuttings were reduced to the same lower level.
A possible role of an irradiance-mediated difference in the topographic distribution of IAA in the base of pea cuttings on the subsequent adventitious root formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号