首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The aim of the study was to discover possible differential cytotoxicity of triptolide towards estrogen-sensitive MCF-7 versus estrogen-insensitive MDA-MB-231 human breast cancer cells. Considering that MCF-7 cells express functional Estrogen receptor α (ERα) and wild-type p53, whereas MDA-MB-231 cells which are ERα-negative express mutant p53, the anti-proliferation effect of triptolide on MCF-7 and MDA-MB-231 cells were examined, the apoptotic effect and cell cycle arrest caused by triptolide were investigated, ERα and p53 expression were also observed in this paper. The results showed that the anti-proliferation effects were induced by triptolide in both cell lines. But the value of IC50 in MCF-7 cells for its anti-proliferation effect was about one tenth of that in MDA-MB-231 cells, which indicated that the effect is more potent in MCF-7 cells. Condensed chromatin or fragmented nuclei could be found in MCF-7 cells treated with only 40 nM triptolide but in MDA-MB-231 cells they couldn’t be observed until the concentration reached to 400 nM. Triptolide induced significant S cell cycle arrest along with the presence of sub-G0/G1 peak in MDA-MB-231 cells, whereas there was only slightly S cell cycle arrest on cell cycle distribution in MCF-7 cells. The role of p53 in two breast cancer cells was examined, the results showed that the mutant p53 in MDA-MB-231 cells was suppressed and the wild-type p53 in MCF-7 was increased. Moreover, triptolide could down regulate the expression of ERα in MCF-7 cells. The results showed that triptolide is much more sensitive to ERα-positive MCF-7 cells than to ERα-negative MDA-MB-231 cells, and the sensitivity is significantly associated with the ERα and p53 status.  相似文献   

2.
Abnormal activation of the Wnt/β-catenin signaling pathway and subsequent upregulation of β-catenin driven downstream targets—c-Myc and cyclin D1 is associated with development of breast cancer. The objective of our study was to determine if curcumin could modulate the key elements of Wnt pathway in breast cancer cells; an effect that might underscore its usefulness for chemoprevention/treatment of this malignancy. Curcumin showed a cytotoxic effect on MCF-7 cells with 50% inhibitory concentration (IC50) of 35 μM; while IC50 for MDA-MB-231 cells was 30 μM. Treatment with low cytostatic dose of 20 μM curcumin showed G2/M arrest in both breast cancer cells. The effect of curcumin (20 μM) treatment on expression of Wnt/β-catenin pathway components in breast cancer cells (MCF-7 and MDA-MB-231) was analyzed by immunofluorescence and Western blotting. Curcumin was found to effectively inhibit the expression of several Wnt/β-catenin pathway components—disheveled, β-catenin, cyclin D1 and slug in both MCF-7 and MDA-MB-231. Immunofluorescence analysis showed that curcumin markedly reduced the nuclear expression of disheveled and β-catenin proteins. Further, the protein levels of the positively regulated β-catenin targets—cyclin D1 and slug, were downregulated by curcumin treatment. The expression levels of two integral proteins of Wnt signaling, GSK3β and E-cadherin were also altered by curcumin treatment. In conclusion, our data demonstrated that the efficacy of curcumin in inhibition of cell proliferation and induction of apoptosis might occur through modulation of β-catenin pathway in human breast cancer cells.  相似文献   

3.
4.
5.
Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor(ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells.  相似文献   

6.
The non-aromatizable androgen dihydrotestosterone (DHT) has been shown to exert a potent inhibitory effect on the proliferation of some human breast cancer cell lines. DHT, however, has little or no significant inhibition on MCF-7 cell proliferation in either the presence or absence of estradiol (E2). Since the metabolism of DHT into non-active compounds may be responsible for the observed lack of androgenic effect in this cell line, we have investigated the metabolic fate of labeled DHT in MCF-7 cells. A time course incubation was performed with 1 nM [3H]DHT and analysis of the various metabolites formed revealed a time-dependent increase in glucuronidated steroids which was stimulated more than 4-fold by 0.1 nM E2. The major glucuronidated steroid was androstane-3, 17β-diol in both control and E2-stimulated cells, comprising 22 ± 1.2% and 30 ± 0.6% of the total radioactivity in the medium, respectively. Other steroid glucuronides observed included DHT, androstane-3β, 17β-diol, and androsterone, all of which were elevated in the E2-treated cells relative to control values. The present data show that E2 exerts a stimulatory effect on the glucuronidation of androgens and their metabolites in the estrogen-dependent breast cancer celll line MCF-7. Since glucuronidation is an effective means of cellular elimination of active steroids, such a pathway may be considered as a possible site of regulation of breast cancer cell growth by hormones.  相似文献   

7.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

8.
The molecular mechanisms that regulate the endothelial response during transendothelial migration (TEM) of invasive cancer cells remain elusive. Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) has been implicated in the disruption of endothelial cell adherens junctions and in the diapedesis of metastatic cancer cells. We sought to determine the signaling mechanisms underlying the disruption of endothelial adherens junctions after the attachment of invasive breast cancer cells. Attachment of invasive breast cancer cells (MDA-MB-231) to human umbilical vein endothelial cells induced tyrosine phosphorylation of VE-cad, dissociation of β-catenin from VE-cad, and retraction of endothelial cells. Breast cancer cell-induced tyrosine phosphorylation of VE-cad was mediated by activation of the H-Ras/Raf/MEK/ERK signaling cascade and depended on the phosphorylation of endothelial myosin light chain (MLC). The inhibition of H-Ras or MLC in endothelial cells inhibited TEM of MDA-MB-231 cells. VE-cad tyrosine phosphorylation in endothelial cells induced by the attachment of MDA-MB-231 cells was mediated by MDA-MB-231 α2β1 integrin. Compared with highly invasive MDA-MB-231 breast cancer cells, weakly invasive MCF-7 breast cancer cells expressed lower levels of α2β1 integrin. TEM of MCF-7 as well as induction of VE-cad tyrosine phosphorylation and dissociation of β-catenin from the VE-cad complex by MCF-7 cells were lower than in MDA-MB-231 cells. These processes were restored when MCF-7 cells were treated with β1-activating antibody. Moreover, the response of endothelial cells to the attachment of prostatic (PC-3) and ovarian (SKOV3) invasive cancer cells resembled the response to MDA-MB-231 cells. Our study showed that the MDA-MB-231 cell-induced disruption of endothelial adherens junction integrity is triggered by MDA-MB-231 cell α2β1 integrin and is mediated by H-Ras/MLC-induced tyrosine phosphorylation of VE-cad.  相似文献   

9.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.  相似文献   

10.

Background

Clotrimazole is an azole derivative with promising anti-cancer effects. This drug interferes with the activity of glycolytic enzymes altering their cellular distribution and inhibiting their activities. The aim of the present study was to analyze the effects of clotrimazole on the growth pattern of breast cancer cells correlating with their metabolic profiles.

Methodology/Principal Findings

Three cell lines derived from human breast tissue (MCF10A, MCF-7 and MDA-MB-231) that present increasingly aggressive profiles were used. Clotrimazole induces a dose-dependent decrease in glucose uptake in all three cell lines, with Ki values of 114.3±11.7, 77.1±7.8 and 37.8±4.2 µM for MCF10A, MCF-7 and MDA-MB-231, respectively. Furthermore, the drug also decreases intracellular ATP content and inhibits the major glycolytic enzymes, hexokinase, phosphofructokinase-1 and pyruvate kinase, especially in the highly metastatic cell line, MDA-MB-231. In this last cell lineage, clotrimazole attenuates the robust migratory response, an effect that is progressively attenuated in MCF-7 and MCF10A, respectively. Moreover, clotrimazole reduces the viability of breast cancer cells, which is more pronounced on MDA-MB-231.

Conclusions/Significance

Clotrimazole presents deleterious effects on two human breast cancer cell lines metabolism, growth and migration, where the most aggressive cell line is more affected by the drug. Moreover, clotrimazole presents little or no effect on a non-tumor human breast cell line. These results suggest, at least for these three cell lines studied, that the more aggressive the cell is the more effective clotrimazole is.  相似文献   

11.
Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells.  相似文献   

12.
13.
BackgroundActaea racemosa L., also known as black cohosh, is a popular herb commonly used for the treatment of menopausal symptoms. Because of its purported estrogenic activity, black cohosh root extract (BCE) may trigger breast cancer growth.Study design/methodsThe potential effects of standardized BCE and its main constituent actein on cellular growth rates and steroid hormone metabolism were investigated in estrogen receptor alpha positive (ERα+) MCF-7 and -negative (ERα-) MDA-MB-231 human breast cancer cells. Cell numbers were determined following incubation of both cell lines with the steroid hormone precursors dehydroepiandrosterone (DHEA) and estrone (E1) for 48 h, in the presence and absence of BCE or actein. Using a validated liquid chromatography-high resolution mass spectrometry assay, cell culture supernatants were simultaneously analyzed for the ten main steroids of the estrogen pathway.ResultsInhibition of MCF-7 and MDA-MB-231 cell growth (up to 36.9%) was observed following treatment with BCE (1-25 µg/ml) or actein (1-50 µM). Incubation of MCF-7, but not of MDA-MB-231 cells, with DHEA and BCE caused a 20.9% reduction in DHEA-3-O-sulfate (DHEA-S) formation, leading to a concomitant increase in the androgens 4-androstene-3,17-dione (AD) and testosterone (T). Actein was shown to exert an even stronger inhibitory effect on DHEA-S formation in MCF-7 cells (up to 89.6%) and consequently resulted in 12- to 15-fold higher androgen levels compared with BCE. The formation of 17β-estradiol (E2) and its glucuronidated and sulfated metabolites was not affected by BCE or actein after incubation with the estrogen precursor estrone (E1) in either cell line.ConclusionsThe results of the present study demonstrated that actein and BCE do not promote breast cancer cell growth or influence estrogen levels. However, androgen formation was strongly stimulated by BCE and actein, which may contribute to their ameliorating effects on menopausal symptoms in women. Future studies monitoring the levels of AD and T upon BCE supplementation of patients are warranted to verify an association between BCE and endogenous androgen metabolism.  相似文献   

14.
1H high-resolution magic angle spinning nuclear magnetic resonance (1H HR–MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 1H HR–MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR–MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.  相似文献   

15.
Humoral tumor-specific immunity has been investigated as a potential tool to identify tumor-associated antigens and evaluate cancer diagnosis and prognosis. Using SDS-PAGE and western blotting techniques we investigated the humoral immune response against tumor cell antigens in 36 breast cancer patients, 17 node-positive (NP) and 19 node-negative (NN). As a source of antigens, we prepared protein lysates from four breast cancer cell lines (AU565, BT474, MCF-7 and MDA-MB-231) which in vitro exhibit different features of invasion, estrogen receptor/progesterone receptor status and HER2/neu expression thereby potentially representing mild to aggressive forms of clinical disease. A higher number of immunocomplexes Ag–Ab were formed when serum from NN patients was immunoreacted against lysates from AU565 and MCF-7 in comparison to serum from NP patients (P < 0.01). BT474 cells were not a good antigenic source. MDA-MB-231 cells could not significantly discriminate between NN and NP patients since both groups showed higher amounts of reactivity against the lysate. However, comparative analysis of protein preparations purified from MCF-7 and MDA-MB-231 cells and immunodetected concomitantly with the same serum samples showed that serum from patients with cancers with worse prognosis (stage, nodality, HER2/neu and hormonal status) reacted more intensely to proteins purified from the relatively more invasive cell line MDA-MB-231 compared to MCF-7. These findings suggest that the study of serum antibody reactivity to antigens purified from breast cancer cell lines with different invasive properties should be further investigated for its potential in providing beneficial prognostic information in breast cancer. Supported by the United States Military Cancer Institute and the Department of Clinical Investigation at Walter Reed Army Medical Center. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of the Army or the Department of Defense.  相似文献   

16.
Endocrine sensitivity, assessed by the expression of estrogen receptor (ER), has long been the predict factor to guide therapeutic decisions. Tamoxifen has been the most successful hormonal treatment in endocrine-sensitive breast cancer. However, in estrogen-insensitive cancer tamoxifen showed less effectiveness than in estrogen-sensitive cancer. It is interesting to develop new drugs against both hormone-sensitive and insensitive tumor. In this present study we examined anticancer effects of evodiamine extracted from the Chinese herb, Evodiae fructus, in estrogen-dependent and –independent human breast cancer cells, MCF-7 and MDA-MB-231 cells, respectively. Evodiamine inhibited the proliferation of MCF-7 and MDA-MB-231 cells in a concentration-dependent manner with concentration of 1×10−6 and 1×10−5 M. Evodiamine also induced apoptosis via up-regulation of caspase 7 activation, PARP cleavage (Bik and Bax expression). The expression of ER α and β in protein and mRNA levels was down-regulated by evodiamine according to data from immunoblotting and RT-PCR analysis. Overall, our results indicate that evodiamine mediates degradation of ER and induces caspase-dependent pathway leading to inhibit proliferation of breast cancer cell lines. It suggests that evodiamine may in part mediate through ER-inhibitory pathway to inhibit breast cancer cell proliferation.  相似文献   

17.
The plasma membrane Ca2+ ATPase (PMCA) is an important regulator of free intracellular calcium, with dynamic regulation in the rat mammary gland during lactation. Recent studies suggest that Ca2+ plays a role in cellular proliferation. To determine if PMCA expression is altered in tumorigenesis, we compared relative levels of PMCA1 mRNA. We found that the relative expression of PMCA1 mRNA is increased, by approximately 270% and 170%, in MCF-7 and MDA-MB-231 human breast cancer cell lines deprived of serum for 72 h, respectively, compared to the similarly treated MCF-10A human mammary gland epithelial cell line. Characterization of PMCA mRNA isoforms revealed that PMCA1b and PMCA4 mRNA are expressed in MCF-7, MDA-MB-231, SK-BR-3, ZR-75-1 and BT-483 breast cancer cell lines. We also detected PMCA2 mRNA expression in all the breast cancer cell lines examined. However, PMCA3 mRNA was only detected in BT-483 cells. Our results suggest that PMCA expression may be altered in breast cancer cell lines, suggesting altered Ca2+ regulation in these cell lines. Our results also indicate that breast cancer cell lines can express mRNAs for a variety PMCA isoforms.  相似文献   

18.

Background

MiR-155 has emerged as an “oncomiR”, which is the most significantly up-regulated miRNA in breast cancer. However, the mechanisms of miR-155 functions as an oncomiR are mainly unknown. In this study, the aims were to investigate the effects of miR-155 on cell proliferation, cell cycle, and cell apoptosis of ERalpha (+) breast cancer cells and to verify whether TP53INP1 (tumor protein 53-induced nuclear protein 1) is a target of miR-155, and tried to explore the mechanisms of miR-155 in this process.

Results

The expression of miR-155 is significantly higher in MCF-7 cells compared with MDA-MB-231 cells. Ectopic expression of TP53INP1 inhibits growth of MCF-7 cells by inducing cell apoptosis and inhibiting cell cycle progression. Overexpression of miR-155 increases cell proliferation and suppress cell apoptosis, whereas abrogating expression of miR-155 suppress cell proliferation and promotes cell apoptosis of MCF-7 cells. In addition, miR-155 negatively regulates TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, and luciferase reporter reveals that TP53INP1 is targeted by miR-155.

Conclusions

TP53INP1 is the direct target of miR-155. MiR-155, which is overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating target TP53INP1.  相似文献   

19.
20.
PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号